The Gauss and Weingarten Maps

A second approach to defining curvature of an oriented surface (a surface
is orientable if given any two coordinate patches ®;: U; — S, CD]-: U; - S then

N,; = N, j forany p € U; N Uj) is to consider its unit normal, N.The way N

varies as we move to nearby points on the surface reflects the curvature of S. If

— —
N varies “slowly”, then the curvature is “small.” If N varies “quickly”, then the
curvature is “large.”

We can define a mapping of a smooth, regular surface, S, into the unit sphere,
S?, by:

G:S > S?
p — va = unitnormalatp € S.
Since va is a unit vector, it represents a pointin S2.
G is called the Gauss map.

In practice we calculate this as follows: if p = ®(ug, V), then

~ (= _(DuxDy)(ug,Vp)
G (Bluo ) = [ @ux®y) (o wo)]



If ®: U € R? - S is a coordinate patch for S and G: S — S? is the
Gauss map, then G o ®:U € R? - §2,

Let's call G o @ the mapping N: U € R? — S2. Thus if ®(ug, o) =p € S,

then N (ugp, Vo) = N, the unit normal to the surface S at p.

=2l
Il

(o))
S|

(uOJ Vo
[ ]




Notice that for all (u, v) € U, N(u,v) - N(u,v) = 1. Differentiating
this equation with respect to U and vV we get:
Nu-N+ﬁ-ﬁu=0 or ﬁ-ﬁu=0 (%)
Similarly:

N-IVV=O (**)

In particular, if ®(ug, Vo) = p € S and G(p) = q € S2, then
N(ugy, vy) = q € S2. since N(ug, Vo) is the unit normal to S at p, equations

(%) and (*x*) say that if the vectors N, (1g, Vo) and N, (U, V) are each non-
zero then they are perpendicular to the unit normal to S at p.

Hence, both Ny, (i, Vo) and N, (g, o) lie in the tangent plane to S at
D, TpS. But N:U € R? » S2is 3 parametrization for a subset of S2. Thus,

N, (uo, vo) and N, (ug, ) lie in the tangent plane of S at g.




Assuming that N, (U, Vo), N, (g, V) together span the tangent plane of S at
p and the tangent plane of S? at G (p) = q:

TS = T (S*)

i.e. they are the same plane.

The rate at which the unit normal to S at p, Nj, varies is measured by the

derivative (or differential) of G.
D,G:T,S = Ty (S2).
As just noted, T,S = Tg(p) (5?) so we can think of Dpé as mapping
T, (S) into T, (S). As we know, given a vector W € T,S we define:
D,G(W) =W € Tg,)(S?) =T,S
by taking any curve, ¥ on S, passing through p € S (i.e. ]/(to) = p) with
y’(to) = W, thenw = (G o ]/) (to)

In particular, take the curve in U defined by (t, V) and then project it
onto S by taking 4 (t) = 5(15, V). Then y1(ty) = $u(u0, Vo) ifty = Up.

Dpé(}’{ (to))




Then: Dpé (5u(u0,v0)) = % (C~; o 5)(15, UO))|t=t0 = % ((N))(t, Uo))|t=

= d
+ N, (constant)

Dpé (611,(“0) vO)) = ﬁu(uo, 170).

Similarly, take the curve in U defined by (1, t) and project it onto S by

V2 (t) = B(ug, t). Then, 4 (to) = By, (ug, vo) if to = vy.

D,G (5v(u0: 170)) = %((G > ®)(up, t))l

t=t0

= %(ﬁ(uo,t)” = N, (1, Vo)

=40

DyG (B (s v) ) = Ny o, vi).

Hence given any vector wE TpS, we can write it as:

W == aau(uO, vo) + bav(uOJ vO)'

D,G(W) = D,G (Cla)u(uo» Vo) + b@v(uo,vo))
= aDpG (5)u(u0,v0)) + prG (E))v(uO» Vo))

= aﬁu(uo,vo) + bN, (uy, vy).

to



Def. Letp € S, S is aregular smooth surface. The Weingarten map, W), s of S
at p, is defined by

w,

ps = —DpG

(the minus sign will reduce the number of minus signs later).

We want to show that the second fundamental form:

L du(w))du(w,) + M du(w)dv(w,) + M du(w,)dv(w;)
+ N dv(w,)dv(w,)

(where Wy, W, € T,S) is the same as:

< Wy, s(Wy), Wy > (<, > is the dot product).



To do that we need the following lemma:

Lemma: Let $(u, V) be a surface patch with unit normal ﬁ(u, V), then

D, = —L
N, - ®,=N, - ®,=-M
N, ®,=—N

Note: We will also need these relationships later when we want to calculate an
expression for W, ¢ = —Dpé.

Proof: Since E))u and E))v are tangent vectors N - Eﬁu =0andN - ESv = 0.

Differentiating each equation by u and v, we get:

Ny @y +N- Dy =0 Ny @, +N- D, =0
Ny - ®,=-N-®,=-L N, ®,=-N -, =-M
N, @, +N-®,, =0 N, - ®,+ N ®,, =0
N, ®,=-N-®,,=—M N, -®,=~-N-®,, =N

Recall that for a vector W = a@’u + bav € TpS, we defined

du(w) = a and dv(w) = b.



To show that:

L du(w)du(w,) + M du(w)dv (W,) + M du(w,)dv(w,)
+ N dv(w;)dv(w,)

equals < W, (W;), W, >, we just need to show this for basis vectors @, and
®,, for T),S.

Case1: W, = W, = @,
L du(®,)du(®,) + M du(d,)dv(®,) + M du(®,)dv(P,)
+ Ndv(zﬁu)dv(au) =L

Since, du(@u) =1, dv(zﬁu) =0

- —

< W, (@), @, > =< -D,G(®D,), D, >=—< N, ®, >=L.

—

Case2:w; = &, w, =,

L du(a))u)du(a)v) + M du(@u)dv(afv) + M du(av)dv(gu)
+ Ndv(®,)dv(®,) = M
< W,5(®y), @, > =< —D,G(®,),®, >=—< N, D, >= M.

—

Similarly, when W; = @, and W, = @,,.



—

Case3:w; = &, w, =P,

L du(®,)du(®,) + M du(®,)dv(d,) + M du(®,)dv(d,,)
+ Ndv(®,)dv(®,) = N

<W,s(®,), @, >=<-D,G(®,),d, >=< —N,, &, >=N.

Ex. Calculate the Gauss map for the paraboloid z = x?% + yz. Find its image in

SZ.

We can parametrize z = x2 + yz by
@ (u,v) = (u,v,u? + v?)
6u(u, v) = (1,0,2u)
6,,(11, v) = (0,1,2v)

O, XD, =11 0 2ul=-2ui—2vi+k
0 1 2v

||5u X 51,” = V4u? + 4v2 + 1
— _ (=2u,—2v$,1)

N(u,v) = V1+4u? +4v2

_ (—2u,—-2v,1)

C V1tauZ+av? '
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If we change to cylindrical coordinates:

(—2rcos0,—-2rsinf,1)

Varz+1

G(r,0,z) =

Soz=f(r)= \/ﬁis 1-1 from 0 < r < o onto (0,1].

1
Soforany 0 < zy < 1, thereis a unique 7 such that T = 2o
To

—219 cos 8,—21ysin 0,1
Forthatry, 0 < 0 < 2m makes( 2 > )a circle.
w/47'02+1

Thus, the image of the Gauss map is the upper hemisphere, not including
the equator in the x-y plane.
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Ex. Calculate the Gauss map for the cylinder in R3 given by x? + yz =1.

What is the image of the Gauss map in 52?

3(u,v) = (cosu,sinu,v) ; 0<u<2mveER

—

®, = (—sinu,cosu,0)

@, =(0,0,1)

-

— — i) j) k > . -
®, XD, =|—sinu cosu 0= (cosu)i+ (sinu)j.
0 0 1

This is already a unit vector, so we can write:
G(cosu,sinu,v) = (cosu,sinu,0); 0<u < 2m.

Thus the image of the Gauss map is the circle x2 + y2 =1, z = 0.

Notice that in this example, the image of the Gauss map is not a
regular surface.

-la w . .".nn".,‘e
N -
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Ex. Find the image of the Gauss map for z = \/1 + x% + y? (the upper

half of a 2 sheeted hyperboloid).

We can parametrize Z = \/1 + x2 + y? by:

_ 1
D(u,v) = (u v, (1 +u? + v2)z).

Then we have:

Eﬁu(u, U) = (1' 01 ;1) Eﬁv(u, U) = (0' 11 ;1)

(1+u?+4v?2)2 (1+u?+4v?2)2
7k
u
- 1 0 ——— —u > v > .7
cDu X CDU = (1+u2+v2)§ = ll - l] + k
v (1+u?+v?)2 (1+u?+v?)2
0O 1 ———=
(1+u?+v?)2
Nu,v) =
|®u x @, |
-u -V
< -, -, 1>
(1+u2+v2)2  (1+u2+v2)2
2 2
u v
\/ 72tz
1+u2+v2  1+u?+v
_ -u —v V1i4+u?+v?
=< 1 1 1 >

(1+2u?2+2v2)2  (1+2u2+2v2)2  (14+2u?+2v?2)2

1
=G (u, v, (1+u®+ UZ)E).
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In cylindrical coordinates we have:

~ _ o N 2
G(r, H,W) _ < rcosf rsinf 1+r >

Ji+2r2' 14202 14202 T

V1412 o 1+12 1 1
Soz=f(r) = Niwure: by division we get T 5(1 + 1+2r2)'

- \/% (1 + 1+;r2)

which is a strictly decreasing function of ¥ = 0 (f'(r) <0, r>0).

1

lim
r—oo \ 2

(1+— )—ﬁ

1+2r2) ~ 2’
: V2
Soz = f(r)isal-1mapofr = 0 onto (7 ,1].

V2 —19c0S8 —1psingd /14712
Andforeach— <15 <1, < ) )
2 J1+2192 7 \J1+42192 /14212

> isacircle.

2
Thus the image of the Gauss map is the points in S? such that g <z<1.
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Ex. Find the image of the Gauss map for the helicoid given by:
$(u,v) = (vcosu,vsinu,u); ueR, -— V3 < v <+3.

$u = (—vsinu,vcosu,1) 5),, = (cosu, sinu, 0)
— — i) ]_) l—g . > > —
Dy X @y = |—ysinu veosu 1| = —(sinw)+ (cosu)j—vk.
cosu sinu 0
D, XD <-sinu,cosu,—v> =~ .
N(u,v) = ”$”X$”” = Ny = G (vcosu, vsinu,u).
u v

z=f(v)=1_ﬁvvz; —/3 < v <3
f'(v) = — ! 5 < 0 = f(v) is strictly decreasing for all v.
(1+v2)2
. 3 _ -3
since f(—V3) = > f(¥3) = .

-3

= T<Z<§ when —\/§<v<\/§.

For any fixed vy, — V3 < Vo < \/§,

G( . ) <-sinu,cosu,—vy> el
VoCOSU, VoSlNU,U) = IS a circle.
0COSU, VoSINU, Jitvo2

V3

-3
— Image of the Gauss map is the points in S? where T\/— <z< -



Note: If we took v such that —00 < v < 00, then the image of the Gauss map

would be S? minus the north and south poles.
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