The Gauss and Weingarten Maps

A second approach to defining curvature of an **oriented surface** (a surface is orientable if given any two coordinate patches $\overrightarrow{\Phi}_i \colon U_i \to S$, $\overrightarrow{\Phi}_j \colon U_j \to S$ then $\overrightarrow{N}_{p,i} = \overrightarrow{N}_{p,j}$ for any $p \in U_i \cap U_j$) is to consider its unit normal, \overrightarrow{N} . The way \overrightarrow{N} varies as we move to nearby points on the surface reflects the curvature of S. If \overrightarrow{N} varies "slowly", then the curvature is "small." If \overrightarrow{N} varies "quickly", then the curvature is "large."

We can define a mapping of a smooth, regular surface, S, into the unit sphere, S^2 , by:

$$\tilde{G}\colon S o S^2$$

$$p o \vec{N}_p = \text{unit normal at } p\in S.$$

Since \vec{N}_p is a unit vector, it represents a point in S^2 .

 \tilde{G} is called the **Gauss map**.

In practice we calculate this as follows: if $p = \overrightarrow{\Phi}(u_0, v_0)$, then

$$\widetilde{G}\left(\overrightarrow{\Phi}(u_0, v_0)\right) = \frac{(\overrightarrow{\Phi}_u \times \overrightarrow{\Phi}_v)(u_0, v_0)}{\|(\overrightarrow{\Phi}_u \times \overrightarrow{\Phi}_v)(u_0, v_0)\|}.$$

If $\overrightarrow{\Phi}$: $U \subseteq \mathbb{R}^2 \to S$ is a coordinate patch for S and \widetilde{G} : $S \to S^2$ is the Gauss map, then $\widetilde{G} \circ \overrightarrow{\Phi}$: $U \subseteq \mathbb{R}^2 \to S^2$.

Let's call $\tilde{G}\circ \overrightarrow{\Phi}$ the mapping $\overrightarrow{N}\colon U\subseteq \mathbb{R}^2\to S^2$. Thus if $\overrightarrow{\Phi}(u_0,v_0)=p\in S$, then $\overrightarrow{N}(u_0,v_0)=\overrightarrow{N}_p$, the unit normal to the surface S at p.

Notice that for all $(u,v)\in U$, $\vec{N}(u,v)\cdot\vec{N}(u,v)=1$. Differentiating this equation with respect to u and v we get:

$$\vec{N}_u \cdot \vec{N} + \vec{N} \cdot \vec{N}_u = 0$$
 or $\vec{N} \cdot \vec{N}_u = 0$ (*) Similarly:

$$\vec{N} \cdot \vec{N}_{v} = 0 \qquad (**)$$

In particular, if $\overrightarrow{\Phi}(u_0,v_0)=p\in S$ and $\widetilde{G}(p)=q\in S^2$, then $\overrightarrow{N}(u_0,v_0)=q\in S^2$. Since $\overrightarrow{N}(u_0,v_0)$ is the unit normal to S at p, equations (*) and (**) say that if the vectors $\overrightarrow{N}_u(u_0,v_0)$ and $\overrightarrow{N}_v(u_0,v_0)$ are each non-zero then they are perpendicular to the unit normal to S at p.

Hence, both $\vec{N}_u(u_0,v_0)$ and $\vec{N}_v(u_0,v_0)$ lie in the tangent plane to S at p,T_pS . But $\vec{N}\colon U\subseteq\mathbb{R}^2\to S^2$ is a parametrization for a subset of S^2 . Thus, $\vec{N}_u(u_0,v_0)$ and $\vec{N}_v(u_0,v_0)$ lie in the tangent plane of S^2 at q.

Assuming that $\vec{N}_u(u_0, v_0)$, $\vec{N}_v(u_0, v_0)$ together span the tangent plane of S at p and the tangent plane of S^2 at $\tilde{G}(p)=q$:

$$T_p S = T_{\tilde{G}(p)}(S^2)$$

i.e. they are the same plane.

The rate at which the unit normal to S at p, \vec{N}_p , varies is measured by the derivative (or differential) of \tilde{G} .

$$D_p \tilde{G}: T_p S \to T_{\tilde{G}(p)}(S^2).$$

As just noted, $T_pS=T_{\tilde{G}(p)}(S^2)$ so we can think of $D_p\tilde{G}$ as mapping $T_p(S)$ into $T_p(S)$. As we know, given a vector $\overrightarrow{w}\in T_pS$ we define:

$$D_p \tilde{G}(\vec{w}) = \overrightarrow{\overline{w}} \in T_{\tilde{G}(p)}(S^2) = T_p S$$

by taking any curve, γ on S, passing through $p \in S$ (i.e. $\gamma(t_0) = p$) with $\gamma'(t_0) = \overrightarrow{w}$, then $\overline{\overrightarrow{w}} = \left(\widetilde{G} \circ \gamma\right)'(t_0)$.

In particular, take the curve in U defined by (t,v_0) and then project it onto S by taking $\gamma_1(t)=\overrightarrow{\Phi}(t,v_0)$. Then $\gamma_1'(t_0)=\overrightarrow{\Phi}_u(u_0,v_0)$ if $t_0=u_0$.

Then:
$$D_p \tilde{G}\left(\overrightarrow{\Phi}_u(u_0, v_0)\right) = \frac{d}{dt}\left(\left(\widetilde{G} \circ \overrightarrow{\Phi}\right)(t, v_0)\right)\Big|_{t=t_0} = \frac{d}{dt}\left(\left(\overrightarrow{N}\right)(t, v_0)\right)\Big|_{t=t_0}$$

$$= \overrightarrow{N}_u \frac{d(t)}{dt}\Big|_{t=t_0} + \overrightarrow{N}_v \frac{d}{dt} \text{ (constant)}$$

$$D_p \tilde{G}\left(\overrightarrow{\Phi}_u(u_0, v_0)\right) = \overrightarrow{N}_u(u_0, v_0).$$

Similarly, take the curve in U defined by (u_0,t) and project it onto S by $\gamma_2(t)=\overrightarrow{\Phi}(u_0,t)$. Then, $\gamma_2'(t_0)=\overrightarrow{\Phi}_v(u_0,v_0)$ if $t_0=v_0$.

$$\begin{split} D_{p}\widetilde{G}\left(\overrightarrow{\Phi}_{v}(u_{0},v_{0})\right) &= \frac{d}{dt}\Big(\big(\widetilde{G}\circ\overrightarrow{\Phi}\big)(u_{0},t)\Big)\Big|_{t=t_{0}} \\ &= \frac{d}{dt}\Big(\overrightarrow{N}(u_{0},t)\Big)\Big|_{t=t_{0}} = \overrightarrow{N}_{v}(u_{0},v_{0}) \\ D_{p}\widetilde{G}\left(\overrightarrow{\Phi}_{v}(u_{u},v_{u})\right) &= \overrightarrow{N}_{v}(u_{0},v_{0}). \end{split}$$

Hence given any vector $\overrightarrow{w} \in T_pS$, we can write it as:

$$\vec{w} = a \vec{\Phi}_u(u_0, v_0) + b \vec{\Phi}_v(u_0, v_0).$$

Thus:

$$\begin{split} D_p \tilde{G}(\vec{w}) &= D_p \tilde{G} \left(a \overrightarrow{\Phi}_u(u_0, v_0) + b \overrightarrow{\Phi}_v(u_0, v_0) \right) \\ &= a D_p \tilde{G} \left(\overrightarrow{\Phi}_u(u_0, v_0) \right) + b D_p \tilde{G} \left(\overrightarrow{\Phi}_v(u_0, v_0) \right) \\ &= a \vec{N}_u(u_0, v_0) + b \vec{N}_v(u_0, v_0). \end{split}$$

Def. Let $p \in S$, S is a regular smooth surface. The **Weingarten map**, $W_{p,S}$ of S at p, is defined by

$$W_{p,S} = -D_p \tilde{G}$$

(the minus sign will reduce the number of minus signs later).

We want to show that the second fundamental form:

$$\begin{array}{l} L \ du(\overrightarrow{w}_1) du(\overrightarrow{w}_2) + M \ du(\overrightarrow{w}_1) dv(\overrightarrow{w}_2) + M \ du(\overrightarrow{w}_2) dv(\overrightarrow{w}_1) \\ + N \ dv(\overrightarrow{w}_1) dv(\overrightarrow{w}_2) \end{array}$$

(where \overrightarrow{w}_1 , $\overrightarrow{w}_2 \in T_pS$) is the same as:

$$< W_{p,S}(\vec{w}_1), \vec{w}_2>$$
 (< , > is the dot product).

To do that we need the following lemma:

Lemma: Let $\overrightarrow{\Phi}(u,v)$ be a surface patch with unit normal $\overrightarrow{N}(u,v)$, then

$$\vec{N}_u \cdot \vec{\Phi}_u = -L$$

$$\vec{N}_u \cdot \vec{\Phi}_v = \vec{N}_v \cdot \vec{\Phi}_u = -M$$

$$\vec{N}_v \cdot \vec{\Phi}_v = -N.$$

Note: We will also need these relationships later when we want to calculate an expression for $W_{p,S}=-D_p\tilde{G}$.

Proof: Since $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$ are tangent vectors $\overrightarrow{N}\cdot\overrightarrow{\Phi}_u=0$ and $\overrightarrow{N}\cdot\overrightarrow{\Phi}_v=0$. Differentiating each equation by u and v, we get:

$$\vec{N}_{u} \cdot \vec{\Phi}_{u} + \vec{N} \cdot \vec{\Phi}_{uu} = 0 \qquad \vec{N}_{u} \cdot \vec{\Phi}_{v} + \vec{N} \cdot \vec{\Phi}_{vu} = 0$$

$$\vec{N}_{u} \cdot \vec{\Phi}_{u} = -\vec{N} \cdot \vec{\Phi}_{uu} = -L \qquad \vec{N}_{u} \cdot \vec{\Phi}_{v} = -\vec{N} \cdot \vec{\Phi}_{vu} = -M$$

$$\vec{N}_{v} \cdot \vec{\Phi}_{u} + \vec{N} \cdot \vec{\Phi}_{uv} = 0 \qquad \vec{N}_{v} \cdot \vec{\Phi}_{v} + \vec{N} \cdot \vec{\Phi}_{vv} = 0$$

$$\vec{N}_{v} \cdot \vec{\Phi}_{u} = -\vec{N} \cdot \vec{\Phi}_{uv} = -M \qquad \vec{N}_{u} \cdot \vec{\Phi}_{v} = -\vec{N} \cdot \vec{\Phi}_{vv} = -N.$$

Recall that for a vector
$$\overrightarrow{w}=a\overrightarrow{\Phi}_u+b\overrightarrow{\Phi}_v\in T_pS$$
, we defined
$$du(\overrightarrow{w})=a \text{ and } dv(\overrightarrow{w})=b.$$

To show that:

$$\begin{array}{l} L \ du(\overrightarrow{w}_1) du(\overrightarrow{w}_2) + M \ du(\overrightarrow{w}_1) dv \ (\overrightarrow{w}_2) + M \ du(\overrightarrow{w}_2) dv(\overrightarrow{w}_1) \\ + N \ dv(\overrightarrow{w}_1) dv(\overrightarrow{w}_2) \end{array}$$

equals $< W_{p,s}(\vec{w}_1), \vec{w}_2 >$, we just need to show this for basis vectors $\vec{\Phi}_u$ and $\vec{\Phi}_v$ for T_pS .

Case 1:
$$\vec{w}_1 = \vec{w}_2 = \vec{\Phi}_u$$

$$L du(\overrightarrow{\Phi}_u)du(\overrightarrow{\Phi}_u) + M du(\overrightarrow{\Phi}_u)dv(\overrightarrow{\Phi}_u) + M du(\overrightarrow{\Phi}_u)dv(\overrightarrow{\Phi}_u) + N dv(\overrightarrow{\Phi}_u)dv(\overrightarrow{\Phi}_u) = L$$

Since,
$$du(\overrightarrow{\Phi}_u) = 1$$
, $dv(\overrightarrow{\Phi}_u) = 0$

$$< W_{p,S}(\overrightarrow{\Phi}_u), \overrightarrow{\Phi}_u > = < -D_p \widetilde{G}(\overrightarrow{\Phi}_u), \overrightarrow{\Phi}_u > = - < \overrightarrow{N}_u, \overrightarrow{\Phi}_u > = L.$$

Case 2:
$$\overrightarrow{w}_1 = \overrightarrow{\Phi}_u$$
, $\overrightarrow{w}_2 = \overrightarrow{\Phi}_v$

$$L du(\overrightarrow{\Phi}_u)du(\overrightarrow{\Phi}_v) + M du(\overrightarrow{\Phi}_u)dv(\overrightarrow{\Phi}_v) + M du(\overrightarrow{\Phi}_v)dv(\overrightarrow{\Phi}_u) + N dv(\overrightarrow{\Phi}_u)dv(\overrightarrow{\Phi}_v) = M$$

$$< W_{p,S}(\overrightarrow{\Phi}_u), \overrightarrow{\Phi}_v> = <-D_p \widetilde{G}(\overrightarrow{\Phi}_u), \overrightarrow{\Phi}_v> = -<\overrightarrow{N}_u, \overrightarrow{\Phi}_v> = M.$$
 Similarly, when $\overrightarrow{w}_1=\overrightarrow{\Phi}_v$ and $\overrightarrow{w}_2=\overrightarrow{\Phi}_u.$

Case 3:
$$\overrightarrow{w}_1 = \overrightarrow{\Phi}_v$$
, $\overrightarrow{w}_2 = \overrightarrow{\Phi}_v$

$$L \, du(\overrightarrow{\Phi}_v) du(\overrightarrow{\Phi}_v) + M \, du(\overrightarrow{\Phi}_v) dv(\overrightarrow{\Phi}_v) + M \, du(\overrightarrow{\Phi}_v) dv(\overrightarrow{\Phi}_v)$$

$$+ N dv(\overrightarrow{\Phi}_v) dv(\overrightarrow{\Phi}_v) = N$$

$$< W_{p,S}(\overrightarrow{\Phi}_v), \overrightarrow{\Phi}_v> = <-D_p \widetilde{G}(\overrightarrow{\Phi}_v), \overrightarrow{\Phi}_v> = <-\overrightarrow{N}_v, \overrightarrow{\Phi}_v> = N.$$

Ex. Calculate the Gauss map for the paraboloid $z=x^2+y^2$. Find its image in S^2 .

We can parametrize
$$z=x^2+y^2$$
 by
$$\overrightarrow{\Phi}(u,v)=(u,v,u^2+v^2)$$

$$\overrightarrow{\Phi}_u(u,v)=(1,0,2u)$$

$$\overrightarrow{\Phi}_v(u,v)=(0,1,2v)$$

$$\overrightarrow{\Phi}_{u} \times \overrightarrow{\Phi}_{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 0 & 2u \\ 0 & 1 & 2v \end{vmatrix} = -2u\overrightarrow{i} - 2v\overrightarrow{j} + \overrightarrow{k}$$

$$\begin{aligned} \|\vec{\Phi}_{u} \times \vec{\Phi}_{v}\| &= \sqrt{4u^{2} + 4v^{2} + 1} \\ \vec{N}(u, v) &= \frac{(-2u, -2v, 1)}{\sqrt{1 + 4u^{2} + 4v^{2}}} \\ \tilde{G}(u, v, u^{2} + v^{2}) &= \frac{(-2u, -2v, 1)}{\sqrt{1 + 4u^{2} + 4v^{2}}}. \end{aligned}$$

If we change to cylindrical coordinates:

$$\widetilde{G}(r,\theta,z) = \frac{(-2r\cos\theta, -2r\sin\theta, 1)}{\sqrt{4r^2+1}}.$$

So
$$z = f(r) = \frac{1}{\sqrt{4r^2 + 1}}$$
 is 1-1 from $0 \le r < \infty$ onto (0,1].

So for any $0 < z_0 \le 1$, there is a unique r_0 such that $\frac{1}{\sqrt{4{r_0}^2+1}} = z_0$.

For that
$$r_0$$
, $0 \leq \theta \leq 2\pi$ makes $\frac{(-2r_0\cos\theta, -2r_0\sin\theta, 1)}{\sqrt{4{r_0}^2+1}}$ a circle.

Thus, the image of the Gauss map is the upper hemisphere, not including the equator in the x-y plane.

Ex. Calculate the Gauss map for the cylinder in \mathbb{R}^3 given by $x^2+y^2=1$. What is the image of the Gauss map in S^2 ?

$$\overrightarrow{\Phi}(u,v) = (\cos u, \sin u, v) \; ; \; 0 \le u \le 2\pi, v \in \mathbb{R}$$

$$\overrightarrow{\Phi}_u = (-\sin u, \cos u, 0)$$

$$\overrightarrow{\Phi}_v = (0,0,1)$$

$$\overrightarrow{\Phi}_u \times \overrightarrow{\Phi}_v = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ -\sin u & \cos u & 0 \\ 0 & 0 & 1 \end{vmatrix} = (\cos u) \vec{\iota} + (\sin u) \vec{j}.$$

This is already a unit vector, so we can write:

$$\tilde{G}(\cos u, \sin u, v) = (\cos u, \sin u, 0); \quad 0 \le u \le 2\pi.$$

Thus the image of the Gauss map is the circle $x^2 + y^2 = 1$, z = 0. Notice that in this example, the image of the Gauss map is not a regular surface.

Ex. Find the image of the Gauss map for $z=\sqrt{1+x^2+y^2}$ (the upper half of a 2 sheeted hyperboloid).

We can parametrize $z = \sqrt{1 + x^2 + y^2}$ by:

$$\vec{\Phi}(u,v) = (u,v,(1+u^2+v^2)^{\frac{1}{2}}).$$

Then we have:

$$\vec{\Phi}_u(u,v) = (1,0,\frac{u}{(1+u^2+v^2)^{\frac{1}{2}}}) \qquad \vec{\Phi}_v(u,v) = (0,1,\frac{v}{(1+u^2+v^2)^{\frac{1}{2}}})$$

$$\overrightarrow{\Phi}_{u} \times \overrightarrow{\Phi}_{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 0 & \frac{u}{(1+u^{2}+v^{2})^{\frac{1}{2}}} \\ 0 & 1 & \frac{v}{(1+u^{2}+v^{2})^{\frac{1}{2}}} \end{vmatrix} = \frac{-u}{(1+u^{2}+v^{2})^{\frac{1}{2}}} \overrightarrow{i} - \frac{v}{(1+u^{2}+v^{2})^{\frac{1}{2}}} \overrightarrow{j} + \overrightarrow{k}$$

$$\vec{N}(u,v) = \frac{\vec{\Phi}_{u} \times \vec{\Phi}_{v}}{\|\vec{\Phi}_{u} \times \vec{\Phi}_{v}\|}$$

$$< \frac{-u}{(1+u^{2}+v^{2})^{\frac{1}{2}}}, \frac{-v}{(1+u^{2}+v^{2})^{\frac{1}{2}}}$$

$$= \frac{\frac{u^{2}}{1+u^{2}+v^{2}}, \frac{v^{2}}{1+u^{2}+v^{2}}+1}{\sqrt{\frac{u^{2}}{1+u^{2}+v^{2}}}, \frac{-v}{(1+2u^{2}+2v^{2})^{\frac{1}{2}}}, \frac{\sqrt{1+u^{2}+v^{2}}}{(1+2u^{2}+2v^{2})^{\frac{1}{2}}} >$$

$$= \tilde{G}\left(u, v, (1+u^{2}+v^{2})^{\frac{1}{2}}\right).$$

In cylindrical coordinates we have:

$$\begin{split} \tilde{G} \left(r, \theta, \sqrt{1 + r^2} \right) &= < \frac{-r cos \theta}{\sqrt{1 + 2 r^2}}, \frac{-r sin \theta}{\sqrt{1 + 2 r^2}}, \frac{\sqrt{1 + r^2}}{\sqrt{1 + 2 r^2}} >. \\ \text{So } z &= f(r) = \frac{\sqrt{1 + r^2}}{\sqrt{1 + 2 r^2}} \qquad \text{by division we get } \frac{1 + r^2}{1 + 2 r^2} = \frac{1}{2} \left(1 + \frac{1}{1 + 2 r^2} \right), \\ &= \sqrt{\frac{1}{2} \left(1 + \frac{1}{1 + 2 r^2} \right)} \end{split}$$

which is a strictly decreasing function of $r \ge 0$ (f'(r) < 0, r > 0).

$$\lim_{r \to \infty} \sqrt{\frac{1}{2} \left(1 + \frac{1}{1 + 2r^2} \right)} = \frac{\sqrt{2}}{2},$$

So z=f(r) is a 1-1 map of $r\geq 0$ onto $\left(\frac{\sqrt{2}}{2}\right)$, 1.

And for each
$$\frac{\sqrt{2}}{2} < r_0 \le 1$$
, $< \frac{-r_0 cos\theta}{\sqrt{1+2{r_0}^2}}$, $\frac{-r_0 sin\theta}{\sqrt{1+2{r_0}^2}}$, $\frac{\sqrt{1+{r_0}^2}}{\sqrt{1+2{r_0}^2}} >$ is a circle.

Thus the image of the Gauss map is the points in S^2 such that $\frac{\sqrt{2}}{2} < z \le 1$.

Ex. Find the image of the Gauss map for the helicoid given by:

$$\overrightarrow{\Phi}(u,v) = (\text{vcos } u, v \sin u, u); \quad u \in \mathbb{R}, \quad -\sqrt{3} < v < \sqrt{3}.$$

$$\vec{\Phi}_u = (-v \sin u, v \cos u, 1)$$
 $\vec{\Phi}_v = (\cos u, \sin u, 0)$

$$\overrightarrow{\Phi}_{u} \times \overrightarrow{\Phi}_{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -v \sin u & v \cos u & 1 \\ cosu & sinu & 0 \end{vmatrix} = -(\sin u) \overrightarrow{i} + (\cos u) \overrightarrow{j} - v \overrightarrow{k}.$$

$$\vec{N}(u,v) = \frac{\vec{\Phi}_u \times \vec{\Phi}_v}{\|\vec{\Phi}_u \times \vec{\Phi}_v\|} = \frac{\langle -sinu, cosu, -v \rangle}{\sqrt{1+v^2}} = \tilde{G}(vcosu, vsinu, u).$$

$$z = f(v) = \frac{-v}{\sqrt{1+v^2}}; \quad -\sqrt{3} < v < \sqrt{3}.$$

$$f'(v) = -\frac{1}{(1+v^2)^{\frac{3}{2}}} < 0 \implies f(v)$$
 is strictly decreasing for all v .

Since
$$f(-\sqrt{3}) = \frac{\sqrt{3}}{2}$$
, $f(\sqrt{3}) = \frac{-\sqrt{3}}{2}$

$$\Rightarrow \frac{-\sqrt{3}}{2} < z < \frac{\sqrt{3}}{2}$$
 when $-\sqrt{3} < v < \sqrt{3}$.

For any fixed v_0 , $-\sqrt{3} < v_0 < \sqrt{3}$,

$$\tilde{G}(v_0 cosu, v_0 sinu, u) = \frac{<-sinu, cosu, -v_0>}{\sqrt{1+{v_0}^2}} \quad \text{is a circle}.$$

 \Longrightarrow Image of the Gauss map is the points in S^2 where $\frac{-\sqrt{3}}{2} < z < \frac{\sqrt{3}}{2}$.

Note: If we took v such that $-\infty < v < \infty$, then the image of the Gauss map would be S^2 minus the north and south poles.