Tensors- HW Problems

- 1. Suppose the dimension of V is 3 and $\{v_1, v_2, v_3\}$ is a basis for V. Let $T \in \mathfrak{F}^2(V)$ and $w_1 = a_{11}v_1 + a_{12}v_2 + a_{13}v_3$, $w_2 = a_{21}v_1 + a_{22}v_2 + a_{23}v_3$. Show that:
 - a. $T(w_1, w_2) = \sum_{i,j=1}^{i,j=3} a_{1i} a_{2j} T(v_i, v_j)$
 - b. If $\varphi_i(v_j) = \delta_{ij}$, then $\varphi_1 \otimes \varphi_3(w_1, w_2) = a_{11}a_{23}$.
- 2. Suppose *V* is the vector space \mathbb{R}^2 , and $S: V \times V \to \mathbb{R}$, by $S(v_1, v_2) = v_1 \cdot v_2$ (i.e., the dot product of v_1 and v_2) and $T: V \times V \to \mathbb{R}$, by $T(v_1, v_2) = \det(\frac{v_1}{v_2})$. Let $w_1 = (1,2)$, $w_2 = (1,-1)$, $w_3 = (2,1)$, and $w_4 = (-1,-2)$. Evaluate $(S \otimes T)(w_1, w_2, w_3, w_4)$.
- 3. Suppose that $\{v_1, v_2, v_3\}$ is a basis for V and $\varphi_i(v_j) = \delta_{ij}$. Let $w_1 = 2v_1 + v_2, \ w_2 = v_1 2v_3, \ w_3 = 2v_1 v_2 + v_3$, and $T = \varphi_1 \otimes \varphi_1 \otimes \varphi_3$. Calculate $Alt \ T(w_1, w_2, w_3)$.

4. Let $f: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation represented in the

standard basis
$$\{e_i\}$$
 by $f=\begin{bmatrix}0&1&2&0\\1&-2&0&1\\0&0&2&1\\1&0&3&0\end{bmatrix}$. Let $\{\varphi_i\}$ be the dual

basis so $\varphi_i \big(e_j \big) = \delta_{ij}$. Now let $T \in \mathfrak{J}^2(\mathbb{R}^4)$ given by

$$T = \varphi_2 \otimes \varphi_3 - \varphi_1 \otimes \varphi_4.$$

Find $f^*T(w_1, w_2)$ where

$$w_1 = (1, -1, 1, 2)$$
 and $w_2 = (-2, 2, 0, 1)$.

5. Let $T \in \mathfrak{J}^2(\mathbb{R}^2)$ be the dot product of two vectors, i.e., if

$$v_1 = a_1e_1 + b_1e_2$$
, and $v_2 = a_2e_1 + b_2e_2$, then

$$T(v_1, v_2) = a_1 a_2 + b_1 b_2$$
. Suppose $\varphi_i(e_i) = \delta_{ii}$.

We know that $\{\varphi_1 \otimes \varphi_1, \varphi_1 \otimes \varphi_2, \varphi_2 \otimes \varphi_1, \varphi_2 \otimes \varphi_2\}$ is a basis for $\mathfrak{F}^2(\mathbb{R}^2)$. Write T as a linear combination of this basis.

Hint:
$$a_1a_2 + b_1b_2 = T(v_1, v_2) =$$

$$\lambda_1(\varphi_1 \otimes \varphi_1)(v_1, v_2) + \lambda_2(\varphi_1 \otimes \varphi_2)(v_1, v_2)$$

$$+\lambda_3(\varphi_2\otimes\varphi_1)(v_1,v_2)+\lambda_4(\varphi_2\otimes\varphi_2)(v_1,v_2).$$

Now plug in v_1 and v_2 into the RHS and calculate.