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Integration  
 

Suppose that 𝐴 ⊆ ℝ𝑛 is a closed rectangle, i.e. 
 

𝐴 = {(𝑥1, … , 𝑥𝑛)|  𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖], 𝑖 = 1, … , 𝑛} 
 

We want to first discuss the definition of:     ∫ 𝑓
𝐴

 ,  where 𝑓: 𝐴 → ℝ.  

 
 

A partition of an interval, [𝑎, 𝑏], is a sequence, 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑛, where: 
 

𝑎 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 = 𝑏 
 
A partition of a rectangle, [𝑎1, 𝑏1]  ×  [𝑎2, 𝑏2]  × … ×  [𝑎𝑛, 𝑏𝑛], is a 

collection: 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}  where each 𝑃𝑖 is a partition of [𝑎𝑖, 𝑏𝑖]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Partition in ℝ3 
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Suppose 𝑓: 𝐴 → ℝ is a bounded function and 𝑃 is a partition of 𝐴. For each 

subrectangle, 𝑆, of the partition let: 
 

𝑚𝑆(𝑓) = inf{𝑓(𝑥)|𝑥 ∈ 𝑆} 
 

𝑀𝑆(𝑓) = sup{𝑓(𝑥)|𝑥 ∈ 𝑆} 
 

and let 𝑣(𝑆) = volume of 𝑆. 
 
Define the lower and upper sums of 𝑓 for 𝑃 by: 
 

𝐿(𝑓, 𝑃) = ∑ 𝑚𝑠(𝑓) ∙ 𝑣(𝑆)

𝑆

 

 

 𝑈(𝑓, 𝑃) = ∑ 𝑀𝑆(𝑓) ∙ 𝑣(𝑆).

𝑆

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Notice 𝐿(𝑓, 𝑃) ≤ 𝑈(𝑓, 𝑃) since 𝑚𝑠(𝑓) ≤ 𝑀𝑆(𝑓). 
 

                 Upper Sum= 𝑈(𝑓, 𝑃)                                             Lower Sum= 𝐿(𝑓, 𝑃) 
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Lemma: Suppose the partition 𝑃′ refines 𝑃 (that is each subrectangle of 𝑃′ is 

contained in a subrectangle of 𝑃) then: 
 

𝐿(𝑓, 𝑃) ≤ 𝐿(𝑓, 𝑃′)   ;     𝑈(𝑓, 𝑃′) ≤ 𝑈(𝑓, 𝑃) 
 
Proof (in one dimension): 

𝑚𝑖 = inf 𝑓(𝑥)
𝑡𝑖≤𝑥≤𝑡𝑖+1 

           𝑀𝑖 = sup 𝑓(𝑥)
𝑡𝑖≤𝑥≤𝑡𝑖+1 

 

 
  𝑚𝑖

′ = inf 𝑓(𝑥)
𝑡𝑖≤𝑥≤𝑡 

            𝑀𝑖
′ = sup 𝑓(𝑥)

𝑡𝑖≤𝑥≤𝑡 
 

 
    𝑚𝑖

′′ = inf 𝑓(𝑥)
𝑡≤𝑥≤𝑡𝑖+1 

            𝑀𝑖
′′ = sup 𝑓(𝑥)

𝑡≤𝑥≤𝑡𝑖+1 
 

 
Notice:  𝑚𝑖

′ ≥ 𝑚𝑖   and  𝑚𝑖
′′ ≥ 𝑚𝑖 also  𝑀𝑖

′ ≤ 𝑀𝑖   and  𝑀𝑖
′′ ≤ 𝑀𝑖 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

    𝑎                         𝑡𝑖                  𝑡     𝑡𝑖+1                                                    𝑏 
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Thus over that interval (rectangle): 

 
        𝐿(𝑓, 𝑃′) = 𝑚𝑖

′(𝑡 − 𝑡𝑖) + 𝑚𝑖
′′(𝑡𝑖+1 − 𝑡) 

   ≥ 𝑚𝑖(𝑡 − 𝑡𝑖) + 𝑚𝑖(𝑡𝑖+1 − 𝑡) = 𝑚𝑖(𝑡𝑖+1 − 𝑡𝑖) 

                       = 𝐿(𝑓, 𝑃). 

 
       𝑈(𝑓, 𝑃′) = 𝑀𝑖

′(𝑡 − 𝑡𝑖) + 𝑀𝑖
′′(𝑡𝑖+1 − 𝑡) 

   ≤ 𝑀𝑖(𝑡 − 𝑡𝑖) + 𝑀𝑖(𝑡𝑖+1 − 𝑡) = 𝑀𝑖(𝑡𝑖+1 − 𝑡𝑖) 

                       = 𝑈(𝑓, 𝑃). 

 

 

Corollary: If 𝑃 and 𝑃′ are any two partitions, then 𝐿(𝑓, 𝑃′) ≤ 𝑈(𝑓, 𝑃). 
 
 
Proof: Let 𝑃′′ be a partition that refines 𝑃 and 𝑃′, then: 
 

𝐿(𝑓, 𝑃′) ≤ 𝐿(𝑓, 𝑃′′) ≤ 𝑈(𝑓, 𝑃′′) ≤ 𝑈(𝑓, 𝑃). 
 
 
 
Def.  A function, 𝑓: 𝐴 → ℝ, is called integrable if 𝑓 is bounded and: 
 

sup
𝑃

(𝐿(𝑓, 𝑃)) = inf
𝑃

(𝑈(𝑓, 𝑃)). 

 

In this case:      ∫ 𝑓 = sup
𝑃

(𝐿(𝑓, 𝑃)) = inf
𝑃

(𝑈(𝑓, 𝑃))
𝐴

. 
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Theorem: A bounded function, 𝑓: 𝐴 → ℝ, is integrable if, and only if, for  

 every 𝜖 > 0 there is a partition 𝑃 of 𝐴 such that: 
 

𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) < 𝜖 
 
Proof:  

If given any 𝜖 > 0 there is a partition such that:  
𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) < 𝜖, then: 

inf
𝑃

(𝑈(𝑓, 𝑃)) = sup (
𝑃

𝐿(𝑓, 𝑃)). 

 
 
 

If 𝑓 is integrable, then: 

inf
𝑃

(𝑈(𝑓, 𝑃)) = sup
𝑃

( 𝐿(𝑓, 𝑃)). 
 

 

Then for any 𝜖 > 0 there are partitions, 𝑃 and 𝑃′, with: 
𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃′) < 𝜖. 

 
 

 

  Let 𝑃′′ be a refinement of 𝑃 and 𝑃′, then: 
𝑈(𝑓, 𝑃′′) − 𝐿(𝑓, 𝑃′′) ≤ 𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃′) < 𝜖. 

 
 
 
 
 
 
Ex.  Let 𝑓: 𝐴 → ℝ be a constant function, 𝑓(𝑥) = 𝑐. Then for any partition, 

𝑃, and subrectangle, 𝑆, we have 𝑚𝑆(𝑓) = 𝑀𝑆(𝑓) = 𝑐 so we can write: 

𝐿(𝑓, 𝑃) = 𝑈(𝑓, 𝑃) = ∑ 𝑐 ∙ 𝑣(𝑆)

𝑆

= 𝑐(𝑣(𝐴)) 

           Thus:                            ∫ 𝑓
𝐴

= 𝑐(𝑣(𝐴)). 
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Ex.  Let 𝑓: [0, 1]  ×  [0, 1] → ℝ by: 
                                       𝑓(𝑥, 𝑦) = 0  ;    𝑥 ∈ ℚ 

𝑓(𝑥, 𝑦) = 1  ;    𝑥 ∈ ℝ − ℚ 

          Show that ∫ 𝑓
𝐴

 doesn’t exist. 

 

 Let 𝑃 be a partition, then every subrectangle contains points, (𝑥, 𝑦), 
          where 𝑥 is rational and points where 𝑥 is irrational. 
 
 Thus:      𝑚𝑆(𝑓) = 0,   𝑀𝑆(𝑓) = 1,   so we have 
 

𝐿(𝑓, 𝑃) = ∑(0) 𝑣(𝑆)

𝑆

= 0 

 

𝑈(𝑓, 𝑃) = ∑(1) 𝑣(𝑆)

𝑆

= 1 

So inf 𝑈(𝑓, 𝑃) = 1 and sup 𝐿(𝑓, 𝑃) = 0. Thus ∫ 𝑓
𝐴

 doesn’t exist. 

 
 
 

Ex. Suppose that 𝑓: 𝐴 ⊆ ℝ → ℝ is integrable. Show that if 𝑐 is a real 

 constant, then 𝑐𝑓 is integrable and ∫ 𝑐𝑓
𝐴

= 𝑐 ∫ 𝑓
𝐴

. 

 
 Let’s consider two cases:    1) where 𝑐 ≥ 0   and    2) where 𝑐 < 0. 
 

Case 1:    𝑐 ≥ 0. Let 𝑃 be any partition. In any subrectangle: 
 

𝑀𝑆(𝑐𝑓) = 𝑐𝑀𝑆(𝑓) 
𝑚𝑆(𝑐𝑓) = 𝑐𝑚𝑆(𝑓) 

Thus: 
 

𝑈(𝑐𝑓, 𝑃) = 𝑐𝑈(𝑓, 𝑃) 
𝐿(𝑐𝑓, 𝑃) = 𝑐𝐿(𝑓, 𝑃). 
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Case 2:     𝑐 < 0. 
              
𝑀𝑆(𝑐𝑓) = −|𝑐|𝑚𝑆(𝑓) 
𝑚𝑆(𝑐𝑓) = −|𝑐|𝑀𝑆(𝑓) 

Thus: 

                  𝑈(𝑐𝑓, 𝑃) = −|𝑐|𝐿(𝑓, 𝑃) 
                   𝐿(𝑐𝑓, 𝑃) = −|𝑐|𝑈(𝑓, 𝑃).  

 

 
So if 𝑐 ≥ 0, then: 
 

𝑈(𝑐𝑓, 𝑃) − 𝐿(𝑐𝑓, 𝑃) = 𝑐(𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃)).   

 
 

   If 𝑐 < 0, then: 
 

 𝑈(𝑐𝑓, 𝑃) − 𝐿(𝑐𝑓, 𝑃) = −|𝑐|𝐿(𝑓, 𝑃)— (−|𝑐|𝑈(𝑓, 𝑃)) 
 

                                       = |𝑐|(𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃)).  

 

 
Since 𝑓 is integrable for all 𝜖 > 0, there exists a partition, 𝑃, such that: 
 

                        𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) <
𝜖

|𝑐|
 . 

 
 

Thus, for that partition: 

    𝑈(𝑐𝑓, 𝑃) − 𝐿(𝑐𝑓, 𝑃) = |𝑐|(𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃)) < 
|𝑐|𝜖

|𝑐|
 = 𝜖  

 

  and 𝑐𝑓 is integrable. 
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Since 𝑐𝑓 is integrable, we have: 
 

            𝑐 ≥ 0              ∫ 𝑐𝑓
𝐴

= inf
P

𝑈(𝑐𝑓, 𝑃) = inf
P

𝑐𝑈(𝑓, 𝑃)   

                     = 𝑐 inf
P

𝑈(𝑓, 𝑃) = 𝑐 ∫ 𝑓
𝐴

 

 

𝑐 < 0              ∫ 𝑐𝑓
𝐴

= sup
P

𝐿(𝑐𝑓, 𝑃) = sup
P

(−|𝑐|𝑈(𝑓, 𝑃)) 

 
  = −|𝑐| inf 𝑈(𝑓, 𝑃) = 𝑐 inf 𝑈(𝑓, 𝑃)  since 𝑐 < 0 
 

  = 𝑐 ∫ 𝑓
𝐴

. 

 
 
 

 
Ex.  Show that if 𝑓 and 𝑔 are integrable on 𝐴, then 𝑓 + 𝑔 is integrable on 𝐴 
and: 

                               ∫ (𝑓 + 𝑔)
𝐴

= ∫ 𝑓
𝐴

+ ∫ 𝑔
𝐴

. 

 
 

Notice that for any rectangle 𝑆: 
 

inf
𝑆

(𝑓 + 𝑔) ≥ inf
𝑆

(𝑓) + inf
𝑆

(𝑔) 
 

                  sup
𝑆

(𝑓 + 𝑔) ≤ sup
𝑆

(𝑓) + sup
𝑆

(𝑔). 

 
 

 
Thus:           𝑚𝑆(𝑓) + 𝑚𝑆(𝑔) ≤ 𝑚𝑆(𝑓 + 𝑔) 
 

𝑀𝑆(𝑓) + 𝑀𝑆(𝑔) ≥ 𝑀𝑆(𝑓 + 𝑔). 
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Hence we have for every partition 𝑃: 

 

                       𝐿(𝑓, 𝑃) + 𝐿(𝑔, 𝑃) ≤ 𝐿(𝑓 + 𝑔, 𝑃) 
 
 

    𝑈(𝑓 + 𝑔, 𝑃) ≤ 𝑈(𝑓, 𝑃) + 𝑈(𝑔, 𝑃). 
 
Thus for any partition 𝑃: 
 

𝐿(𝑓, 𝑃) + 𝐿(𝑔, 𝑃) ≤ 𝐿(𝑓 + 𝑔, 𝑃) ≤ 𝑈(𝑓 + 𝑔, 𝑃) ≤ 𝑈(𝑓, 𝑃) + 𝑈(𝑔, 𝑃). 
 
 

Since 𝑓 is integrable we know given any 𝜖 > 0 there exists a partition, 𝑄, such 
that: 

𝑈(𝑓, 𝑄) − 𝐿(𝑓, 𝑄) <
𝜖

2
 . 

 
 

Since 𝑔 is integrable we know there exists a partition, 𝑄′, such that: 
 

𝑈(𝑔, 𝑄′) − 𝐿(𝑔, 𝑄′) <
𝜖

2
 . 

 
 

Let 𝑃′ be a refinement of 𝑄 and 𝑄′ thus, 
 

𝑈(𝑓, 𝑃′) − 𝐿(𝑓, 𝑃′) <
𝜖

2
 

 
 

𝑈(𝑔, 𝑃′) − 𝐿(𝑔, 𝑃′) <
𝜖

2
 

 
 

𝑈(𝑓, 𝑃′) + 𝑈(𝑔, 𝑃′) − (𝐿(𝑓, 𝑃′) + 𝐿(𝑔, 𝑃′)) < 𝜖. 
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But: 
 

𝑈(𝑓 + 𝑔, 𝑃′) − 𝐿(𝑓 + 𝑔, 𝑃′)                                                                                                           

                                       < 𝑈 (𝑓, 𝑃′
) + 𝑈 (𝑔, 𝑃′

) − (𝐿 (𝑓, 𝑃′
) + 𝐿 (𝑔, 𝑃′

)) < 𝜖. 

 

So 𝑓 + 𝑔 is integrable. 

 
Now let’s show: 

∫ (𝑓 + 𝑔) = ∫ 𝑓
𝐴

+ ∫ 𝑔
𝐴𝐴

. 

 
We just saw that for partition 𝑃′: 

                                         𝑈(𝑓, 𝑃′) − 𝐿(𝑓, 𝑃′) <
𝜖

2
 

 
 

𝑈(𝑔, 𝑃′) − 𝐿(𝑔, 𝑃′) <
𝜖

2
 . 

 
So:     

      𝑈(𝑓, 𝑃′) < 𝐿(𝑓, 𝑃′) +
𝜖

2
≤ ∫ 𝑓

𝐴

+
𝜖

2
 

 
 

         𝑈(𝑔, 𝑃′) < 𝐿(𝑔, 𝑃′) +
𝜖

2
≤ ∫ 𝑔

𝐴

+
𝜖

2
 . 

 
Thus: 

                   ∫ (𝑓 + 𝑔)
𝐴

 ≤ 𝑈(𝑓 + 𝑔, 𝑃′) ≤ 𝑈(𝑓, 𝑃′) + 𝑈(𝑔, 𝑃′) 

                                        ≤ ∫ 𝑓
𝐴

+ ∫ 𝑔
𝐴

+ 𝜖.  

 

Since 𝜖 was arbitrary: 

                   ∫ (𝑓 + 𝑔)
𝐴

≤ ∫ 𝑓
𝐴

+ ∫ 𝑔
𝐴

. 
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If we replace 𝑓, 𝑔 with −𝑓, −𝑔 in the previous inequality we get: 

                    ∫ (𝑓 + 𝑔)
𝐴

≥ ∫ 𝑓
𝐴

+ ∫ 𝑔
𝐴

. 

   
                   
Hence:      

                    ∫ (𝑓 + 𝑔) = ∫ 𝑓
𝐴

+ ∫ 𝑔
𝐴𝐴

. 

 
 
Ex.  Suppose that 𝑓: 𝐴 → ℝ is a bounded function such that 𝑓(𝑥) = 0 except 

at a finite number of points.  Prove 𝑓 is integrable and ∫ 𝑓
𝐴

= 0.  

 
 
Suppose that 𝑓(𝑥) = 0 except at the points 𝑝1, … , 𝑝𝑘, and 𝑓(𝑝𝑖) = 𝑎𝑖. 
Let 𝜖 > 0 be given and let’s show that we can find a partition 𝑃 such that:       
                                    𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) < 𝜖. 
 
Given any partition 𝑄 we can always find a refinement of 𝑄, 𝑃, such that no 

two 𝑝𝑖′𝑠 are in the same subrectangle and such that: 

                                     𝑣(𝑆𝑖) <  
𝜖

𝑘|𝑎𝑖|
 . 

 

Then we have:    𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) = ∑ (𝑀𝑆 − 𝑚𝑆)𝑣(𝑆)𝑆 . 
 
                 But              𝑀𝑆𝑖

− 𝑚𝑆𝑖
= 𝑎𝑖        if 𝑎𝑖 ≥ 0 

                                                        = −𝑎𝑖     if  𝑎𝑖 < 0. 
 
So                                 𝑀𝑆𝑖

− 𝑚𝑆𝑖
= |𝑎𝑖|.        
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Thus                𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) = ∑ (𝑀𝑆 − 𝑚𝑆)𝑣(𝑆)𝑆   

 

                                                         = ∑ |𝑎𝑖|𝑣(𝑆𝑖)𝑆𝑖
  

 

                                                         ≤ ∑ |𝑎𝑖|(𝑆𝑖

𝜖

𝑚|𝑎𝑖|
) = 𝜖. 

So 𝑓 is integrable. 

 
 

Now notice that:     |𝑈(𝑓, 𝑃)| = | ∑ 𝑀𝑆𝑖
𝑣(𝑆𝑖)|𝑆𝑖

≤ ∑ |𝑎𝑖|(𝑆𝑖

𝜖

𝑘|𝑎𝑖|
) = 𝜖.  

 

Thus for any 𝜖 > 0, there exists a partition 𝑃 such that  
 

                          0 ≤ |𝑈(𝑓, 𝑃)| < 𝜖,   

 

                  thus inf
𝑃

|𝑈(𝑓, 𝑃)| = 0  and ∫ 𝑓
𝐴

= 0.      

 
 
 
                                                 
Measure Zero 
 
Def.  A subset 𝐴 ⊆ ℝ𝑛 has an 𝑛-dimensional measure 𝟎 if for every 𝜖 > 0 
there is a cover {𝑈1, 𝑈2, … } of 𝐴 by closed rectangles such that:  

∑ 𝑣(𝑈𝑖) <
∞

𝑖=1
𝜖 . 

 
Any finite number of points has measure 0. Since if there are 𝑛 points we can 

cover each point with a rectangle whose volume is less than 
𝜖

𝑛
 . 

 
 
 
 
 
 



13 
 

Prop.  Any countable set of points has measure 0. 

 
Proof:  Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, … } cover 𝑎𝑖 with a rectangle, 𝑈𝑖, of volume  

                 less than 
𝜖

2𝑖 . Then: 

 

∑ 𝑣(𝑈𝑖) <
∞

𝑖=1
∑

𝜖

2𝑖

∞

𝑖=1
= 𝜖 

 
 
 
Theorem: If 𝐴 = 𝐴1 ∪ 𝐴2 ∪ … and each 𝐴𝑖 has measure 0, then 𝐴 has measure 0.  

 
 
Proof: Since 𝐴𝑖 has measure 0, there is a cover {𝑈𝑖,1, 𝑈𝑖,2, 𝑈𝑖,3, … } of 𝐴𝑖 

  by closed rectangles such that: 
 

∑ 𝑣(𝑈𝑖,𝑗)
∞

𝑗=1
<

𝜖

2𝑖
 . 

 

 Thus, {𝑈𝑖,𝑗}𝑖,𝑗=1
∞  is a cover for 𝐴 and: 

 

∑ ∑ 𝑣(𝑈𝑖,𝑗)
∞

𝑗=1
<

∞

𝑖=1
∑

𝜖

2𝑖

∞

𝑖=1
= 𝜖. 

 
So 𝐴 has measure 0. 
 
 
 

Theorem: Let 𝐴 be a closed rectangle and 𝑓: 𝐴 → ℝ a bounded function. Let 
𝐵 = {𝑥|𝑓 is not continuous at 𝑥}. Then 𝑓 is integrable if, and only if, 𝐵 is 
a set of measure 0. 
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Def. Let 𝐶 ⊆ ℝ𝑛. The characteristic function 𝝌𝑪 of 𝐶 is defined by: 
 

𝜒𝐶(𝑥) = 0  if 𝑥 ∉ 𝐶 
 

 𝜒𝐶(𝑥) = 1  if 𝑥 ∈ 𝐶. 
 
 

 

 If 𝐶 ⊆ 𝐴 for some rectangle 𝐴 and 𝑓: 𝐴 → ℝ is bounded, then ∫ 𝑓
𝐶

 is 

defined as: 

∫ 𝒇
𝑪

= ∫ (𝒇)(
𝑨

𝝌𝑪) 

 

 provided that (𝑓)(𝜒𝐶) is integrable. 
 
 
 
Notice that if 𝐶 ⊆ 𝐴  is a bounded set of measure 0 and 𝑓 is integrable over 
𝐶 then  

                                              ∫ 𝑓
𝐶

= 0. 
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Prop.  Suppose 𝑓: 𝐴 ⊆ ℝ𝑛 → ℝ is continuous and 𝐴 is compact.  Then 𝑓  is 

integrable over 𝐴. 
 
Proof:  𝑓 is continuous on a compact set 𝐴, so 𝑓 is uniformly continuous. 
Thus, for all 𝜖 > 0 there exists a 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝐴 if 

                |𝑥 − 𝑦| < 𝛿  then  |𝑓(𝑥) − 𝑓(𝑦)| <
𝜖

𝑣(𝐴)
 . 

 
Let 𝑃 be any partition of 𝐴. 
Let 𝑃′ be a refinement of 𝑃  such that every subrectangle 𝑆 has the property 

that 𝑆 ⊆ 𝐵𝛿

2

(center of 𝑆). 

 

 
 
 
Thus we have for every subrectangle 𝑆: 

                 (𝑀𝑆 − 𝑚𝑆) <
𝜖

𝑣(𝐴)
  and thus 

 

     𝑈(𝑓, 𝑃′) − 𝑙(𝑓, 𝑃′) = ∑ (𝑀𝑆 − 𝑚𝑆)𝑣(𝑆) <𝑆
𝜖

𝑣(𝐴)
𝑣(𝐴) = 𝜖 . 

 
So 𝑓 is integrable. 

𝛿/2 
𝐴 


