Integrating Differential Forms over Manifolds

Def. If ω is a p-form on a k-dimensional manifold with boundary M and c a singular p-cube in M, then we define:

$$\int_{c} \omega = \int_{[0,1]^{k}} c^* \omega.$$

If c is a p-chain, then we also use the definition above.

Ex. Let T^2 be the torus embedded in \mathbb{R}^4 by:

 $\overrightarrow{\Phi}(u,v)=(\cos u\,,\sin u\,,\cos v\,,\sin v)\,;\;\;(u,v)\in[0,2\pi]^2$ Let ω be given in \mathbb{R}^4 by $\;\omega=-x_2x_3dx_1\wedge dx_4.$

Evaluate:

$$\int_{T^2}\omega.$$

$$\overrightarrow{\Phi}^*(-x_2x_3dx_1 \wedge dx_4) = (-x_2x_3 \circ \overrightarrow{\Phi})\overrightarrow{\Phi}^*(dx_1) \wedge \overrightarrow{\Phi}^*(dx_4)$$

$$= (-\sin u \cos v)(-\sin u \, du) \wedge (\cos v \, dv)$$

$$= \sin^2 u \cos^2 v \, du \wedge dv.$$

$$\int_{T^2} \omega = \int_0^{2\pi} \int_0^{2\pi} \vec{\Phi}^* (\omega) = \int_0^{2\pi} \int_0^{2\pi} \sin^2 u \cos^2 v \, du \, dv$$
$$= \left(\int_0^{2\pi} \sin^2 u \, du \right) \left(\int_0^{2\pi} \cos^2 v \, dv \right)$$

$$= \left(\int_0^{2\pi} \left(\frac{1}{2} - \frac{1}{2} \cos 2u \right) du \right) \left(\int_0^{2\pi} \left(\frac{1}{2} + \frac{1}{2} \cos 2v \right) dv \right)$$
$$= \left(\left(\frac{1}{2} u - \frac{1}{4} \sin 2u \right) \Big|_0^{2\pi} \right) \left(\left(\frac{1}{2} v + \frac{1}{4} \sin 2v \right) \Big|_0^{2\pi} \right) = \pi^2.$$

Theorem: If $c_1, c_2 \colon [0,1]^k \to M$ are two orientation preserving (i.e. $\det((c_2^{-1}c_1)') > 0$) singular k-cubes on the oriented k-dimensional manifold M and ω is a k-form on M such that $\omega = 0$ outside of $c_1([0,1]^k) \cap c_2([0,1]^k)$, then:

$$\int_{c_1} \omega = \int_{c_2} \omega .$$

Proof:

$$\begin{split} \int_{c_1} \omega &= \int_{[0,1]^k} c_1^*(\omega) \\ &= \int_{[0,1]^k} (c_2 \circ c_2^{-1} \circ c_1)^*(\omega) = \int_{[0,1]^k} (c_2^{-1} \circ c_1)^* \big(c_2^*(\omega) \big) \\ \text{since } (f \circ g)^* \omega &= g^*(f^* \omega). \end{split}$$

So we need to show:

$$\int_{[0,1]^k} (c_2^{-1} \circ c_1)^* (c_2^*(\omega)) = \int_{[0,1]^k} c_2^*(\omega) = \int_{c_2} \omega.$$

Let $g = c_2^{-1} \circ c_1$. If $c_2^* \omega = f dx_1 \wedge ... \wedge dx_k$, then:

$$(c_2^{-1} \circ c_1)^* (c_2^*(\omega)) = g^* (c_2^*(\omega))$$

$$= g^* (f dx_1 \wedge ... \wedge dx_k)$$

$$= (f \circ g) \det g' dx_1 \wedge ... \wedge dx_k$$

$$= (f \circ g) |\det g'| dx_1 \wedge ... \wedge dx_k ...$$

Since $\det((c_2^{-1}c_1)') > 0$.

So we have:

$$\int_{[0,1]^k} (c_2^{-1} \circ c_1)^* (c_2^*(\omega)) = \int_{[0,1]^k} (f \circ g) |\det g'| dx_1 \wedge \dots \wedge dx_k$$
$$= \int_{c_2^{-1} c_1([0,1]^k)} c_2^* \omega = \int_{[0,1]^k} c_2^* \omega = \int_{c_2} \omega.$$

We still need a way to define:

$$\int_{M} \omega$$
.

If $\omega=0$ outside of an orientation preserving singular k-cube c in M we define:

$$\int_{M} \boldsymbol{\omega} = \int_{c} \boldsymbol{\omega}.$$

The previous theorem shows that this definition doesn't depend on which c we use. However, this still doesn't give us a general definition for:

$$\int_{M} \omega$$
.

To define this we need the notion of a partition of unity.

Def. Let M be a manifold and $\{U_{\alpha}\}_{\alpha\in I}=\mathcal{U}$ be a collection of open sets that covers M. A **partition of unity subordinate to \mathcal{U}** is a collection of continuous functions $\{\psi_{\alpha}\colon M\to\mathbb{R}\}$ satisfying:

- 1) $0 \le \psi_{\alpha}(x) \le 1$ for all $\alpha \in I$ and $x \in M$
- 2) $\psi_{lpha}(x)=0$ outside a compact subset of U_{lpha}
- 3) For all $x \in M$ there exists only a finite number of $\alpha \in I$ such that $\psi_{\alpha}(x) \neq 0$
- 4) $\sum_{\alpha \in I} \psi_{\alpha}(x) = 1$ for all $x \in M$.

Theorem: Let M be a smooth manifold with atlas $A=\{U_{\alpha},h_{\alpha}\}_{\alpha\in I}$. There exists a smooth partition of unity of M subordinate to A.

A construction of a smooth partition of unity often depends on constructing smooth "bump" functions (smooth functions that are zero outside a compact set) and "cut-off" functions (smooth functions that are constant outside of a compact set).

Bump Function

Cutoff Function

These functions can be built out of:

$$f(x) = 0 if x \le 0$$
$$= e^{-(\frac{1}{x})} if x > 0.$$

Notice:

 $g_1(x)=f(x-a)$ is smooth and $g_1(x)=0,\ \ x\leq a$, and nonzero for x>a.

 $g_2(x) = f(a-x)$ is a smooth and $g_2(x) = 0, x \geq a$ and nonzero for x < a.

If a < b, then

$$g(x) = f(x - a)f(b - x) = 0 \quad \text{for } x \notin (a, b)$$
$$> 0 \quad \text{for } x \in (a, b).$$

g(x) is a "bump" function.

$$h(x) = \frac{f(b-x)}{f(x-a)+f(b-x)} = 1 \quad \text{if } x \le a$$
$$= 0 \quad \text{if } x \ge b.$$

h(x) is strictly decreasing on (a,b) and a "cut-off" function.

Ex. Let $M=\mathbb{R}$ and let $U=\left\{U_j\right\}_{j\in\mathbb{Z}}$, where $U_j=(j-1,j+1)$ be an open cover of \mathbb{R} . If $x\in\mathbb{Z}$, then x is only contained in U_x . If x is not an integer, then $x\in U_{[x]}$ and $x\in U_{[x]+1}$.

Consider the bump function:

$$\begin{split} g_j(x) &= f\big(x - (j - 0.9)\big) f\big((j + 0.9) - x\big) \\ &= 0 & \text{if } x \le j - 0.9 \\ &= e^{\frac{1.8}{(x - j + 0.9)(x - j - 0.9)}} & \text{if } j - 0.9 < x < j + 0.9 \\ &= 0 & \text{if } x \ge j + 0.9 \end{split}$$

where
$$f(x) = 0$$
 if $x \le 0$
$$= e^{-\frac{1}{x}} \text{ if } x > 0.$$

So $g_j(x)=0$ if $x\notin [j-0.9,j+0.9]$, a compact subset of U_j . For any $j\in\mathbb{Z}$ the only functions not identically 0 on U_j are g_{j-1},g_j , and g_{j+1} .

For example, if $j=2, U_2=(1,3)$, then:

$$g_1(x) = 0$$
 if $x \notin [.1, 1.9]$
 $g_2(x) = 0$ if $x \notin [1.1, 2.9]$
 $g_3(x) = 0$ if $x \notin [2.1, 3.9]$

Define:

$$\psi_j(x) = \frac{g_j(x)}{g_{j-1}(x) + g_j(x) + g_{j+1}(x)}$$

 $\{\psi_j(x)\}$ is a partition of unity subordinate to $\mathcal{U}.$

If
$$\kappa_j = [j-0.9, j+0.9]$$
, then $\psi_j(x) = 0$ if $x \notin \kappa_j$ > 0 if $x \in \kappa_j$

and $\psi_j, \psi_{j-1}, \psi_{j+1}$ are only functions not identically 0 on U_j .

If $x = n \in \mathbb{Z}$, then:

$$\sum_{j\in\mathbb{Z}}\psi_j(x)=\psi_n(n)=\frac{g_n(n)}{g_{n-1}(n)+g_n(n)+g_{n+1}(n)}=\frac{g_n(n)}{g_n(n)}=1.$$

If $x \notin \mathbb{Z}$, then let n = [x]:

$$\sum_{j \in \mathbb{Z}} \psi_j(x) = \psi_n(x) + \psi_{n+1}(x)$$

$$= \frac{g_n(x)}{g_{n-1}(x) + g_n(x) + g_{n+1}(x)} + \frac{g_{n+1}(x)}{g_n(x) + g_{n+1}(x) + g_{n+2}(x)}$$

$$= \frac{g_n(x)}{g_n(x) + g_{n+1}(x)} + \frac{g_{n+1}(x)}{g_n(x) + g_{n+1}(x)} = 1$$

since $g_{n-1}(x) = g_{n+2}(x) = 0$ for $x \in U_n \cap U_{n+1}$.

Now we're ready to define $\int_M \, \omega$ for a general k-form ω .

Let $\mathcal U$ be an open cover of M such that for each $U_\alpha\in\mathcal U$ there is an orientation preserving singular k-cube c with $U_\alpha\subseteq c([0,1]^k)$. Now let $\{\psi_\alpha\}_{\alpha\in I}$ be a partition of unity subordinate to $\mathcal U$. We define:

$$\int_{M} \omega = \sum_{\alpha \in I} \int_{M} (\psi_{\alpha})(\omega).$$