Differentiation and Directional Derivatives

If f:R — R, we say that f is differentiable at a € R if

i @D =@

h—0 h

This definition doesn’t make any sense for a function f: R™ — R™ (in that case,
h € R™ and dividing by a vector is not defined).

However, we can think of any number, f’(a), as defining a linear transformation
A of Rinto R by:

AR->R
A(h) = (f'(a))h.

So we could reformulate our definition of the derivative, f'(a), by saying:

L fath) — f@) - f'@h _
im =0

h—0 h
Or
y fla+h) - fla) —A(h) _
im =0
h—0 h

Thus, we say a function f: R — R is differentiable at @ € R if there is a linear
transformation A: R = R such that:

L[t h) = f(a) = Ah) _
im =0

h—-0 h

Note: Any linear transformation, A, of Rinto R,A: R — R, is just
multiplication by a fixed number; A(h) = ph; p € R.



Now we can generalize this definition to: f: R™ — R™.

Def. Afunction f: R™ — R™ is differentiable at a € R" if there is a linear
transformation, 1: R™ — R™, such that:

_If@+h - f@-aml
im =0
h—0 |h|

Notice that (f(a + h) — f(a) — A(h)) € R™ and h € R™.
If this limit is 0, then we say: Df (a) = A.

Theorem: If f: R™ — R™ is differentiable at a € R™, then there is a
unique linear transformation, A: R™ — R™, such that:

@t k) — f@ - AW _
im =0
h—0 |h|

Proof: Suppose T: R™ — R™ is a linear transformation that also satisfies

@t h) — @) — Tl _
im =0

h—-0 |h|

Then we have:

1A = ()|
0= lm—n

i[O — fla+ P +f@) + (flath) - fla) - (W)
= 11m

h—0 ||
< If(a+h)—fl@—-A()| . |If(a+h)—f(a)—1(h)
< lim + lim

h—0 |h h—0 ||

=0+0=0. = A(h) = t(h).



Ex. Let f:R? > R? by f(x,¥) = (xy,x + 2y). Using the definition of the
derivative, show that:

DF(0,0) = ((1’ (2))

| f(6+h)— f(6)—A(h)|
|h

0 O).

= (0, where A = (1 5

We must show that lim
h—-0

If we let h = (hq, hy) then:

0 0\,
0 —£(0) — (hyhy, hy + 2hy) — (.7)
i SO+ 1) = £(0) - 2| =lim| (G 2)G,

h—0 |h| h—0 |h|

— lim |(hihy, hy + 2h;) — (0, hy + 2hy)| — lim |hq b

1 —
h—0 |h| h—0 /h% + h%

Notice that (h; + h,)? = h% + 2hqh, + h% >0

h?+h3
> |hihs] .
So:
- h+h5 )
0 < lim 2L < im —Z— = lim /A7 + h3 = 0
h—-0 /h%_l_h% h-0 /h%-l-h% h—-0
. 0+h)—f(0)=-A(h
Thus lim |f( ) f( ) ( )| = 0 and:

h—-0 |h|

Df(0,0) = ((1) (2’)



Ex. Let f:R? - R by:

feoy) = === ; (xy) # (00)
x“+y

=0 ; (x,y) =(0,0).

Show f is not differentiable at (0, 0).

Let’s assume f is differentiable at (0, 0) and derive a contradiction.

If f is differentiable at (0, 0), then there is a linear transformation:
A: R? - R such that:
: 0+h)-f(0)-A(h
lim OO =AM _
h—-0 ||

0

where h = (hy, h,).

Let A = (ay; aqz) soif (x,y) € R?, then:

X
Alx,y) = (a1 as2) (y) = aq1x +aqpy, and

hq hp

. |Jni+n3
lim
h—-0 /h§+h§

—(aj1hi+aqh;y)

= 0.

For this limit to exist we must get the same value, 0, no matter which

direction h approaches (0, 0).



Suppose h = (h4,0); i.e. we approach (0, 0) along the x-axis.

=0 (fp2 M0 Ry H

SO a11 - 0

Now approach (0, 0) along the y-axis, i.e. hy = 0.

SO a12 - 0

Thus, A = (a;; ay3) = (0 0) maps all vectors in R? to 0.

Knowing A = (0 0), let’s approach (0, 0) by
h = (hl,hl), i.e. hz = hl'

L_ 0|
_|\J/hi+hi . hi _h 1
lim =llmﬁ=hm—2=—.
h-0  [pZ 4 p2 hi~0(hi + h5) h~02h7 2

But then:

- |£(0+h) — £(0) — A(R)| 40
h—0 ||

thus, f(x,y) does not have a derivative at (0, 0).



Ex. Let f:R? - R by:

faey) =22 @y) #(00)
=0 (.X', y) = (010)

Show that f (x, y) is not differentiable at (0, 0).

Let’s assume f(x, y) is differentiable at (0, 0) and derive a contradiction.

If f is differentiable at (0, 0), then there is a linear transformation,
1:R? = R, where:

X
ACx,y) = (a1 aq2) (y) = a;.X + a5y

and

[ @) (©)-2a)] _
h-0 ||

0.

If we let h = (hq, hy) then:

hihj
WL 6h (ay1hy + agphy)
lim —% 2 = 0.

h=0 Vhi + h3

For this limit to exist, we must get the same value, 0, when approaching (0, 0)

from any direction. In particular, suppose h = (h4, 0) (i.e. we approach (0, 0)
along the x-axis).

|—a11h1|
. 0—2=0 = aq1 =0.
%

1 hl



Now approach (0, 0) along the y-axis (i.e. h; = 0):

|—a12h2|

lim —===0 = a;;,=0
_)
2 h2

ThUS, A= (a11 alz) = (O 0)

Knowing A = (0 0), let’s approach (0,0) by h; = h% (i.e. h = (h3, hy)).

n () _ 414
i PO+ ) —FO) —am| _ hhs
h—-0 |h| h,—-0 4 2
(hg + 6h§) h, + h5
= lim i

h2=0 (718 |nd+h2
. 1

= lim ————# 0.
220 (7 [ng+h3

Thus:

- |£(0+R) — £(0) — A(h)| 40
h—0 ||

and Df(0,0) does not exist.



Theorem: If f:R™ — R™ is differentiable at a € R", then it’s
continuous at a € R™.

Proof: To show f is continuous at @ € R™ we need to show:

lim £ (x) = f(a) or equivalently }li_rg(f(a +h) — f(a)) = 0.

We need to use the fact that Df (a) exists:

If@+h) = @ = A _
1m =
h—0 ||

for some linear transformation A; R™® —» R™,

0

Notice that:
0<|f(a+h)—f(a)|=If(a+h)—f(a) —A(h) + A(h)]
<|fla+h) - f(a) —A(R)| + [A(W)]

_ fle+th)—f@—Ah)|
|l

* [l + [A(R)].

For any linear transformation T: R™ — R™, we know thereisa M € R
such that:

IT(W)| < M|(h)|.

If(a+h) - f(a) —A(h)|
Al

Letting h = 0 we know the RHS becomes 0 (why?).
Thus by the squeeze theorem:

lim|f(a+h) - f(a)| = 0.

Thus:

0<|fla+h)-flal<

|h| + M|h|.

Hence:
lim(f(a+h) - f(a)) =0
limf(a+h) = f(a).



Differentiation Theorems:

The Chain Rule: If f: R™ — R™ is differentiable at a, and g: R™ — RP
is differentiable at f(a), then g o f: R™ — RP is
differentiable at a, and:

D(g > f)(a) = Dg(f(a)) o Df ().

1) If f:R™ — R™ is a constant function, then

Df(a) =0

2) If f:R™ - R™ is a linear transformation, then

Df(a) = f

3) If f:R™ —» R™, then f is differentiable at a € R™ if, and only if, f; is
differentiable and Df (a) = (Dfl (a), ..., Dfm(a)). Thus, Df (a) is

the m X 7 matrix whose it" row is Df;(a)

4) If g: R? - Ris defined by g(x,y) = x + y, then
Dg(a,b) = g

5) If m: R? > Ris defined by m(x,y) = xy, then
(Dm(a, b))(x, y) = bx + ay, thus Dm(a,b) = (b a).
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Proof:
1.
L Ifath) —f@ -0l
im =0
h-0 |h|
2.
I lfta+h)—fl@)—fMWI _ . If(@+fh)—fla)-fR)| _
m = lim =0
h—0 |k h=0 |h|

3. If f; is differentiable at @ and A = (Dfl (a), ..., Dfm(a)), then:
fla+h) = fla) — A(h)
= (fila+h) = fi(@) = Dfi(a)(h), ..., fin(a + h) = fin(a) = Df(@)(R))

So,
. Afta+h) = f(a) —A(R)| . S |fi(a + h) — fi(a) — Df;(a)(h)]
Hm ] < %‘i’%; 7] =0

Thus f is differentiable at @ and Df (a) = A.

If f is differentiable at a, then by #2 and the chain rule, f; = m; o f is
differentiable at @ where 7;(x) = x;, and
Dfi(a) = Dm;(f(a)) » Df (a)
=m; o Df(a)
Thus Df (a) = (Dfl(a), ,Dfm(a)).

4. Since g(x,y) = x + y is a linear transformation from R? > R, it follows
from #2 that Dg(a, b) = g.



5. Let A(x,y) = bx + ay, then

|m(a + hl' b + hz) - m(a, b) - /1(h1, hz)l li
=1

lim
h—-0 |(hy, hy)|
Notice that:
|hy hyl < |hy |2 if [hy] < [yl
|hy hy| < |hg |2 if |hy| < Ry
Hence: |h1 hzl S |h1|2 + |h2|2.

So we can write:

|hy hy hi + h3
0< < =
Jhi+h3 Jh?+ hZ

. h{ h
11m|12|

h=>0 |p2.4nz

= 0.

Corollary: If f, g: R™ — R are differentiable at a, then

i)
i)
i)

D(f + g)(a) = Df(a) + Dg(a)
D(f - g)(a) = g(a)Df (a) + f(a)Dg(a)
If g(a) # 0, then:

|hq hyl

m-——-
h=0/h% + h3

= |h? + h3

b (f/g) (@) = g(a)Df (a) — f(a)Dg(a)

(9(@)°
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Proof of ii:

let F:R"™ - R2byF(x) = (f(x),g(x))
p:R* > R byp(xg,xz) = X1 - Xy
then, f(x)g(x) = p o F(x).
D(fg)(a) =D(p e F)(a)
= Dp(F(a)) o DF (a) Chain Rule

= Dp(f(a), g(a)) o DF (a)

= (g(a) f(@) (gg%g) by #3, #5

= g(@)Df(a) + f(a)Dg(a).

In second year calculus, given a function, f: R3 = R, we define the directional
derivative of f at x € R3 along a unit vector, l_i, as:

Daf (x) = o f (x + tiD)

t=0
Furthermore, you learn that it can be calculated by D3 f (x) = Vf - u.
This follows from the chain rule. If we let U = (14, Uy, U3):

_ af dx1 af dxz af dx3
f(x-l_t ) 1 dt +6x2 dt 6x3 dt

—(:,f)( D+ (L) () + s
— Vf-1

This statement is true for all t, hence it’s true for t = 0. Thus

Dyzf(x) =Vf-u

12
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The Directional Derivative represents the rate of change in the value of
z = f(x,y) in the direction of U.

‘Slope is the rate of change of z in the direction of i

We can generalize this notion to define a directional derivative for a function

F:R"™ - R™,

Def. Let F: U € R™ - R™, x € U, and U be a unit vector in R™. The
directional derivative of F in the direction of U at xo € U is:

F(x+hu)—F(x)

DzF(x) = ’lli_r)l}) -

Notice that D F (x) is a vector in R™, whereas the directional derivative of a
function, f: R3 - R, at a point was a number (or a vector with one component).
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However, it is still the case that:

DyF(x) = %(F(x + tid))

t=0

We can see this by letting g(t) = F(x + tu):

g0+ h) — g(0)  F(x+ hu)—F(x)
= lim
h h—0 h

g'(0) = lim = D;F (x).

Thus: DgF(x) = < (F(x + tﬂ’))L_O.

Ex. Let F(x,y) = (x? — y?, 2xy). Find the directional derivative of F at

(1, 2) in the direction of U = (%, — g)

F(x+ta)=F<(1,2)+t(§,—§)>=1~“(1+§,2—§t)

2
(9 (-5 21+ (- 5)).
d 1 3
DaF(1,2) = 3 (FL2) +¢ (5.~ FD)| _ -

(P2 +e(-3))

- ((20+90-26-29(-9) 20+ (D +20) - 2))

soatt =0: | =(1+2v3, —V3+2)=Dz(F(1,2)).

dtle=o
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There is also a similar formula to the case where f: R3 —» R

(i.e. Dy f (x) = Vf- ) where F: R™ - R™.

Notice that
L (FQx+ i) = = (F (x + tid), Fy (x + tid), ..., Fy (x + ti0) )
where F;: R™ - R.

Thus we have:

dit(F(x +t1)) = (VF, -, VF, -1, ..., VFy, - ).

This is again true for all t soitis true for t = 0 and
Dz f(x) = (VF, - U, VF, - U, e, VF - ﬁ) .

We will see soon that:

oF; oF;
DF(x) =1 : .o
dF, dF,
Thus we have:
OF; OF;
a_x1 E U
(DFG)H@ ={ : =~ <)
0x4 0xn

= (VF; - U4, VF, - U, ..., VF, - U)
= DﬁF(x).

Thus:
D3F(x) = (DF(x))(®).
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Ex. LetF(y) = (2 3% 209), (6y) = (L,2), and T = (5, 2),

Find Dy F(1,2).

oF oF
7 &Y 5 ®Y)
PF@y) = or, oF;
Thus,
2x —2
DF(x,y) = <2y ny )
Soat (1, 2):
2 —4
DF(1,2) = (4 ) )
1
2

DgF(1,2) = (DF(1,2))| "5

4 2/\_8 2 -3
2

=(2 —4) 2 <1+2\/§>'

If the derivative of a function exists then the directional derivative exists in every
direction and D3z F(x) = (DF(x))(ﬁ)

However, the directional derivative might exist in every direction without the
derivative existing.



Ex. Let:

fGoy) =22 it (6y) # (0,0)

=0 if (x,y) = (0,0)

Show the directional derivative at (0,0) exists in all directions but

Df (0, 0) does not exist.

Let U = (a, b) be any unit vector.

L f(0 + hit) - £(0) ~ h3ab?
Duf (0,0) = lim h = N (h2a? + b
ab? ab2 b?

N }zl—% (a? + h2b4) az a

If a = 0, then f(6 + hil) = 0 forall h and thus Dy (0,0) = 0. Thus,
Dz £(0,0) exists in all directions.

We can show that Df (0,0) doesn’t exist in two ways.
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1. Df(0,0) does not exist because f(x,y) is not continuous at (0, 0). We

can see this since approaching (0, 0) by letting
hy = h3, we get:

1 h3,h;) = lim g bz —1 0,0) =0
1mf( yh2) 10h4+h4 Zif(')_

So f(x,y) is not continuous at (0, 0), hence Df (0, 0) does not exist.



2. The second way to see this is to assume that Df (0, 0) exists and get a
contradiction. If Df (0, 0) exists, then there is a linear transformation

AL:R? - R, A(x,y) = a;1x + a;, such that:

i FO+ 1) = f(0) 2| _ . |h1+h2
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0

h—0 |h| h—0

If h = 0 along the x-axis, i.e. h, = 0, then the limits is:

|—ay1 k]
0=lim—111 =>a11=0
hi=0  |hy]

If h = 0 along the y-axis, i.e. hy = 0, then the limit is:

|—aq2h,|
0= lim——2% = aq;,=0
h=>0 |y

But this impliesA = (0 0).

Now if b = 0 along (h3, h,), then:

h3 h3

h% + h%
0= lim g— lim

1

2

h2=0 /h3 + h3 720 /h3 + h3

which is a contradiction, so Df (0, 0) does not exist.

* 0



