Representing Tangent Spaces on Manifolds- HW Problems

1. Using the parametrization of S^2 given by

 $\overrightarrow{\Phi}(\varphi,\theta)=(cos\theta sin\varphi,sin\theta sin\varphi,cos\varphi), \quad 0\leq \varphi\leq \pi, \ 0\leq \theta\leq 2\pi,$ Find an equation of the tangent plane to S^2 at $(\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2})$. Use $D\overrightarrow{\Phi}$ to Find this tangent plane.

2. Let a 3-dimensional manifold in \mathbb{R}^4 be given by

$$M = \{(x_1, x_2, x, x_4) \in \mathbb{R}^4 | x_1 = x_2^2 - x_3^2 + x_4^2 \}.$$

- a. Find 3 vectors that span T_pM , where p=(6,3,2,1).
- b. Find an equation in \mathbb{R}^4 for the tangent space at p.
- 3. A 2 dimensional torus is a surface given by $S^1 \times S^1$. A 3 dimensional torus is a solid given by $S^1 \times S^1 \times S^1$. Below is a parametrization of a 3 dimensional torus in \mathbb{R}^4 :

$$\overrightarrow{\Phi}(u_1, u_2, u_3) = ((4 + (2 + cosu_1)cosu_2)cosu_3, \\ (4 + (2 + cosu_1)cosu_2)sinu_3, (2 + cosu_1)sinu_2, sinu_1)$$
 where $(u_1, u_2, u_3) \in [0, 2\pi] \times [0, 2\pi] \times [0, 2\pi].$

a. Find 3 vectors that span the tangent space at

$$\overrightarrow{\Phi}\left(0,0,\frac{\pi}{3}\right) = \left(\frac{7}{2},\frac{7\sqrt{3}}{2},0,0\right).$$

b. Find an equation in \mathbb{R}^4 for this tangent space.

4. A 3 dimensional torus in \mathbb{R}^6 is given by

$$\overrightarrow{\Phi}(u_1, u_2, u_3) = (cosu_1, sinu_1, cosu_2, sinu_2, cosu_3, sinu_3)$$
 where $(u_1, u_2, u_3) \in [0, 2\pi] \times [0, 2\pi] \times [0, 2\pi]$.

a. Find 3 vectors in \mathbb{R}^6 that span the tangent space at

$$\overrightarrow{\Phi}\left(\frac{\pi}{4},0,\frac{\pi}{2}\right) = \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},1,0,0,1\right).$$