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Closed and Exact Differential Forms 
 
Def.  A differential 𝑘-form 𝜔 is called closed if 𝑑𝜔 = 0. 
 
Ex.  Let 𝜔 = (𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦.  Show that 𝜔 is closed. 
 
      𝑑𝜔 = 𝑑[(𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦] 
             = 𝑑[(𝑥2 + 𝑦2)𝑑𝑥] + 𝑑[2𝑥𝑦𝑑𝑦] 
             = 𝑑(𝑥2 + 𝑦2) ∧ 𝑑𝑥 + 𝑑(2𝑥𝑦) ∧ 𝑑𝑦 

             = (
𝜕

𝜕𝑥
(𝑥2 + 𝑦2)𝑑𝑥 +

𝜕

𝜕𝑦
(𝑥2 + 𝑦2)𝑑𝑦) ∧ 𝑑𝑥 

                                                         +(
𝜕

𝜕𝑥
(2𝑥𝑦)𝑑𝑥 +

𝜕

𝜕𝑦
(2𝑥𝑦)𝑑𝑦) ∧ 𝑑𝑦 

             = (2𝑥𝑑𝑥 + 2𝑦𝑑𝑦) ∧ 𝑑𝑥 + (2𝑦𝑑𝑥 + 2𝑥𝑑𝑦) ∧ 𝑑𝑦 
             = 2𝑦𝑑𝑦 ∧ 𝑑𝑥 + 2𝑦𝑑𝑥 ∧ 𝑑𝑦 = 0. 
   
            
Ex.  Show that any 2 form on ℝ2 is closed. 
 
     Any 2 form on ℝ2,  𝜔, can be written as 𝜔 = 𝑓(𝑥, 𝑦)𝑑𝑥 ∧ 𝑑𝑦.  

 

              𝑑𝜔 = 𝑑(𝑓(𝑥, 𝑦)𝑑𝑥 ∧ 𝑑𝑦) 
                     = 𝑑𝑓 ∧ 𝑑𝑥 ∧ 𝑑𝑦 

                     = (
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦) ∧ 𝑑𝑥 ∧ 𝑑𝑦 

                     =
𝜕𝑓

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑥 ∧ 𝑑𝑦 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑥 ∧ 𝑑𝑦 = 0.  

 
 
Ex.  Show that 𝜔 = 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 is closed as a 2 form on ℝ𝑛. 

 

      𝑑𝜔 = 𝑑(𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗) = 𝑑(𝑑𝑥𝑖) ∧ 𝑑𝑥𝑗 + (−1)1𝑑𝑥𝑖 ∧ 𝑑(𝑑𝑥𝑗) = 0. 

 
By induction one can show that   𝜔 = 𝑑𝑥𝑖1

∧ 𝑑𝑥𝑖2
∧ … ∧ 𝑑𝑥𝑖𝑘

 is closed on  

ℝ𝑛. 
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Def.  A differential 𝑘-form 𝜔 is called exact  if 𝜔 = 𝑑𝜂 for some  
         (𝑘 − 1)-form 𝜂. 
 
Ex.  Show that 𝜔 = (𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 is exact on ℝ2. 
 
 
So we have to show we can find a real valued function 𝑓 on ℝ2 such that    
𝑑𝑓 = 𝜔 = (𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦.  

 

However, we know that: 

           𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦. 

 
So we have to find a function 𝑓 such that: 

            𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 = (𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 . 

 
Thus we need to have: 

             
𝜕𝑓

𝜕𝑥
= 𝑥2 + 𝑦2   

             
𝜕𝑓

𝜕𝑦
= 2𝑥𝑦.  

 

We solve these 2 equations as was done in second year calculus. 

             𝑓(𝑥, 𝑦) = ∫(𝑥2 + 𝑦2)𝑑𝑥 =
𝑥3

3
+ 𝑥𝑦2 + 𝑔(𝑦). 

Now differentiate this equation with respect to 𝑦. 

                       
𝜕𝑓

𝜕𝑦
= 2𝑥𝑦 + 𝑔′(𝑦). 

 

But we also know that 
𝜕𝑓

𝜕𝑦
= 2𝑥𝑦, so 

             2𝑥𝑦 + 𝑔′(𝑦) = 2𝑥𝑦. 
 
Thus 𝑔′(𝑦) = 0 and 𝑔(𝑦) = 𝑐. 
 

Thus if 𝑓(𝑥, 𝑦) =
𝑥3

3
+ 𝑥𝑦2 + 𝑐,  then 𝑑𝑓 = 𝜔 = (𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦. 
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Notice that if 𝜔 is exact (i.e. 𝜔 = 𝑑𝜂), then it must be closed since: 
 

𝑑𝜔 = 𝑑(𝑑𝜂) = 0 
 
So exact ⇒ closed. However, if 𝜔 is closed does that imply it’s exact? This is 

actually a very deep question. The answer depends on the set that 𝜔 is defined 
on. 
 
 

Ex.  Suppose 𝜔 =
−𝑦

𝑥2+𝑦2 𝑑𝑥 +
𝑥

𝑥2+𝑦2 𝑑𝑦, is a 1-form defined on 

      ℝ2 − (0,0). Show 𝜔 is closed. 
 

        𝑑𝜔 = 𝑑 (
−𝑦

𝑥2+𝑦2 𝑑𝑥 +
𝑥

𝑥2+𝑦2 𝑑𝑦)  
 
 

               = −𝑑 (
𝑦

𝑥2+𝑦2 𝑑𝑥) + 𝑑 (
𝑥

𝑥2+𝑦2 𝑑𝑦)  
 
 

               = −𝑑 (
𝑦

𝑥2+𝑦2) ∧ 𝑑𝑥 + 𝑑 (
𝑥

𝑥2+𝑦2) ∧ 𝑑𝑦  

 

  = − [
(𝑥2+𝑦2)−𝑦(2𝑦)

(𝑥2+𝑦2)2  𝑑𝑦 ∧ 𝑑𝑥] + [
(𝑥2+𝑦2)−𝑥(2𝑥)

(𝑥2+𝑦2)2  𝑑𝑥 ∧ 𝑑𝑦]  

 

                =
𝑥2−𝑦2

(𝑥2+𝑦2)2  𝑑𝑥 ∧ 𝑑𝑦 +
𝑦2−𝑥2

(𝑥2+𝑦2)2  𝑑𝑥 ∧ 𝑑𝑦 = 0.  

 
 
Is  this 𝜔 exact?  That is, is there a smooth function (or 𝐶1) such that 
 𝑑𝑓 = 𝜔? 
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Suppose there is a smooth function, 𝑓, on ℝ2 − (0,0) such that 𝜔 = 𝑑𝑓 
 

We can transform 𝜔 =
−𝑦

𝑥2+𝑦2 𝑑𝑥 +
𝑥

𝑥2+𝑦2 𝑑𝑦 into polar coordinates by: 
 

𝑔: ℝ2 → ℝ2 
    (𝑟, 𝜃) → (𝑟 cos 𝜃 , 𝑟 sin 𝜃) 
 

𝑥(𝑟, 𝜃) = 𝑟 cos 𝜃 
𝑦(𝑟, 𝜃) = 𝑟 sin 𝜃 

 

Now let’s calculate: 

 

𝑔∗ (
−𝑦

𝑥2+𝑦2 𝑑𝑥 +
𝑥

𝑥2+𝑦2 𝑑𝑦)  
 

      =
−𝑦

𝑥2+𝑦2 ∘ 𝑔 (
𝜕𝑥

𝜕𝑟
𝑑𝑟 +

𝜕𝑥

𝜕𝜃
𝑑𝜃) +

𝑥

𝑥2+𝑦2 ∘ 𝑔 (
𝜕𝑦

𝜕𝑟
𝑑𝑟 +

𝜕𝑦

𝜕𝜃
𝑑𝜃)  

 

=
−𝑟 sin 𝜃

𝑟2
(cos 𝜃 𝑑𝑟 − 𝑟 sin 𝜃 𝑑𝜃) +

𝑟 cos 𝜃

𝑟2 (sin 𝜃 𝑑𝑟 + 𝑟 cos 𝜃 𝑑𝜃)  
 

       = 𝑑𝜃 
 

So it looks like 𝜔 = 𝑑𝜃, but 𝜃 is not continuous on ℝ2 − (0,0), as: 
 

lim
𝜃→2𝜋

𝜃 = 2𝜋 ≠ 0 

 
Furthermore, if there was a smooth function, 𝑓, on ℝ2 − (0,0) such that    
𝑑𝑓 = 𝜔, then: 

𝑑𝑓 = 𝑑𝜃 
𝑑(𝑓 − 𝜃) = 0  ⇒   𝑓 = 𝜃 + constant 

 
Hence 𝑓 can’t be continuous on ℝ2 − (0,0) because 𝜃 isn’t. Thus, there is no 

smooth (or 𝐶1) function, 𝑓, on ℝ2 − (0,0) with 𝑑𝑓 = 𝜔. So 𝜔 is closed but 

not exact. 
 
However, on some subsets of ℝ𝑛, 𝑑𝜔 = 0 does imply 𝜔 = 𝑑𝜂, for any closed 

𝑘-form 𝜔. 
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Theorem (Poincare’s Lemma):  If 𝐴 ⊆ ℝ𝑛 is an open convex region,   

 then every closed form on 𝐴 is exact. 

 
 
 

One way to prove this is to observe that if 𝜔 = ∑ 𝜔𝑖
𝑛
𝑖=1 𝑑𝑥𝑖 is a 1-form and 

𝜔 = 𝑑𝑓 = ∑
𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖

𝑛
𝑖=1  (and we assume 𝑓(0) = 0), then we have: 

 

                         𝑓(𝑥) = ∫
𝑑

𝑑𝑡
𝑓(𝑡𝑥)𝑑𝑡

1

0

= 𝑓(𝑥) − 𝑓(0). 

 

If 𝑢 = 𝑡𝑥, then by the chain rule: 

= ∫ ∑ (
𝜕

𝜕𝑢𝑖
𝑓(𝑡𝑥)) (𝑥𝑖)

𝑛

𝑖=1
𝑑𝑡

1

0

 

 

                                    = ∫ ∑ (𝜔𝑖(𝑡𝑥)) 𝑥𝑖

𝑛

𝑖=1
𝑑𝑡.

1

0

 

 
So in order to find 𝑓 given 𝜔, we should look at: 
 

                         Ι𝜔(𝑥) = ∫ ∑ (𝜔𝑖(𝑡𝑥)) 𝑥𝑖

𝑛

𝑖=1
𝑑𝑡.

1

0

 

 
 
 

For a 𝑘-form (instead of a 1-form) we get: 
 
 
 

          𝜔 = ∑ 𝜔𝑖1
, …,𝑖𝑘𝑖1<⋯<𝑖𝑘

 𝑑𝑥𝑖1
∧ … ∧ 𝑑𝑥𝑖𝑘

    and 

 
Ι𝜔(𝑥) = 

∑ ∑(−1)𝛼−1

𝑘

𝛼=1𝑖1<⋯<𝑖𝑘

(∫ 𝑡𝑘−1
1

0

𝜔𝑖1, …,𝑖𝑘
(𝑡𝑥)𝑑𝑡) 𝑥𝑖𝛼

𝑑𝑥𝑖1
∧ … ∧ 𝑑𝑥𝑖𝛼

̂ ∧ … ∧ 𝑑𝑥𝑖𝑘
 

 
 
 

where 𝑑𝑥𝑖𝛼
̂ means omit 𝑑𝑥𝑖𝛼

. 
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Notice that Ι takes a 𝑘-form and gives us a 𝑘-1 form. It also has the property that 
Ι(0) = 0. Through a very messy calculation one can show that: 

𝜔 = Ι(𝑑𝜔) + 𝑑(Ι𝜔) 
 

Thus, if 𝑑𝜔 = 0, since Ι(0) = 0 we have: 𝜔 = 𝑑(Ι𝜔) and 𝜔 is exact.  
 
 

Let 𝐴 ⊆ ℝ𝑛 be an open set. Let Ω𝑘(𝐴) be the vector space of 𝑘-forms on 𝐴. We 

can create a sequence of linear maps between vector spaces by:  
 

Ω0(𝐴)
𝑑
→ Ω1(𝐴)

𝑑
→ Ω2(𝐴)

𝑑
→ …

𝑑
→ Ω𝑛(𝐴). 

 

If 𝜔 ∈ Ω𝑘(𝐴), then 𝜔 is closed if 𝜔 is in the kernel of: 

𝑑: Ω𝑘(𝐴) → Ω𝑘+1(𝐴) 
 

and 𝜔 is exact if it’s in the image of: 
                                              𝑑: Ω𝑘−1(𝐴) → Ω𝑘(𝐴).  

 
 

Since 𝑑2(𝜂) = 0 for any 𝜂, the image of 𝑑: Ω𝑘−1(𝐴) → Ω𝑘(𝐴) is contained in 

the kernel of 𝑑: Ω𝑘(𝐴) → Ω𝑘+1(𝐴). 
 

We can create a group, called the 𝑘𝑡ℎ de Rham cohomology group, 𝐻𝑑𝑅
𝑘 (𝐴), by: 

𝐻𝑑𝑅
𝑘 (𝐴) =

ker(𝑑: Ω𝑘(𝐴) → Ω𝑘+1(𝐴))

I𝑚(𝑑: Ω𝑘−1(𝐴) → Ω𝑘(𝐴))
 . 

 

 
 

So an element of 𝐻𝑑𝑅
𝑘 (𝐴) is a closed 𝑘-form on 𝐴. Two elements (𝛼1, 𝛼2 ∈ 𝐻𝑑𝑅

𝑘 (𝐴)) 
are considered the same (i.e. they are in the same equivalence class) if they differ by an 
exact 𝑘-form: 

 
 

𝛼1 = 𝛼2 + 𝑑𝜂   ;    𝜂 a 𝑘-1 form 
 

These groups are topological invariants. Thus, if 𝐴1 is homeomorphic to 𝐴2, then 

their de Rham cohomology groups will be the same. 
 


