Calculations with the Metric Tensor

Now let's apply these tensor concepts to the metric tensor for a surface in \mathbb{R}^3 . Recall that if a surface, S, in \mathbb{R}^3 is parameterized by:

$$\overrightarrow{\Phi}: U \subseteq \mathbb{R}^2 \to S \subseteq \mathbb{R}^3$$

$$\overrightarrow{\Phi}(u, v) = \big(x(u, v), y(u, v), z(u, v)\big)$$

then, the first fundamental form, or metric tensor, is given by:

$$g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$$

where

$$g_{11} = \overrightarrow{\Phi}_{u} \cdot \overrightarrow{\Phi}_{u}$$

$$g_{12} = g_{21} = \overrightarrow{\Phi}_{u} \cdot \overrightarrow{\Phi}_{v}$$

$$g_{22} = \overrightarrow{\Phi}_{v} \cdot \overrightarrow{\Phi}_{v}.$$

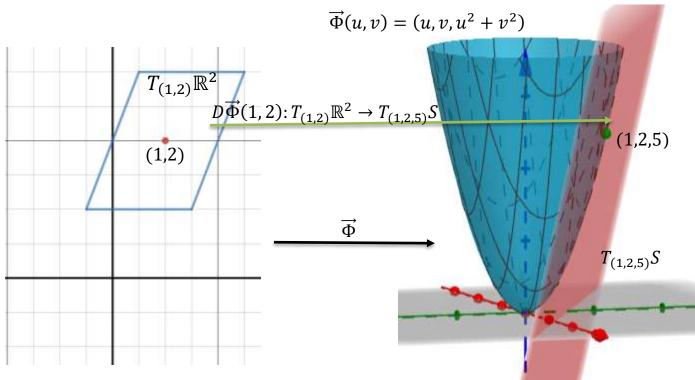
At each point, $p \in S$, $g \in \mathcal{T}^2(T_pS)$.

Thus if given \overrightarrow{w}_1 , $\overrightarrow{w}_2 \in T_pS$, then:

$$g(\overrightarrow{w}_{1},\overrightarrow{w}_{2})=(a_{11}\quad a_{12})\begin{pmatrix}g_{11}&g_{12}\\g_{21}&g_{22}\end{pmatrix}\begin{pmatrix}a_{21}\\a_{22}\end{pmatrix}$$
 where:
$$\overrightarrow{w}_{1}=a_{11}\overrightarrow{\Phi}_{u}+a_{12}\overrightarrow{\Phi}_{v}\\\overrightarrow{w}_{2}=a_{21}\overrightarrow{\Phi}_{v}+a_{22}\overrightarrow{\Phi}_{v}\;.$$

- Ex. Let S be the surface parameterized by $\overrightarrow{\Phi} \colon \mathbb{R}^2 \to S \subseteq \mathbb{R}^3$ and $\overrightarrow{\Phi}(u,v) = (u,v,u^2+v^2)$.
 - a) Find the metric tensor, g, at (u, v) = (1, 2).
 - b) If $\overrightarrow{w}_1=2\overrightarrow{\Phi}_u(1,2)-3\overrightarrow{\Phi}_v(1,2)$ and $\overrightarrow{w}_2=-\overrightarrow{\Phi}_u(1,2)+2\overrightarrow{\Phi}_v(1,2)$ then find $g(\overrightarrow{\Phi}_u(1,2),\overrightarrow{\Phi}_v(1,2)), \ g(\overrightarrow{w}_1,\overrightarrow{w}_2).$
 - c) We know that $D\overrightarrow{\Phi}(1,2)$: $T_{(1,2)}\mathbb{R}^2\to T_{(1,2,5)}S$ is a linear transformation. If $U\in\mathcal{T}^k\big(T_{(1,2,5)}S\big)$, then $\Big(D\overrightarrow{\Phi}(1,2)\Big)^*U\in\mathcal{T}^k\big(T_{(1,2)}\mathbb{R}^2\big).$

 $\text{Find} \left(D \overrightarrow{\Phi}(1,2) \right)^* g(\vec{v}_1,\vec{v}_2 \;) \text{ where } \vec{v}_1 = (-3,2), \ \vec{v}_2 = (1,-1) \\ \text{and} \quad \vec{v}_1,\vec{v}_2 \; \in T_{(1,2)} \mathbb{R}^2.$



a)
$$\vec{\Phi}(u, v) = (u, v, u^2 + v^2)$$

$$\vec{\Phi}_u = (1, 0, 2u)$$
 $\vec{\Phi}_u (1, 2) = (1, 0, 2)$
 $\vec{\Phi}_v = (0, 1, 2v)$ $\vec{\Phi}_v (1, 2) = (0, 1, 4)$

$$g_{11} = \overrightarrow{\Phi}_u \cdot \overrightarrow{\Phi}_u = 5$$

$$g_{12} = g_{21} = \overrightarrow{\Phi}_u \cdot \overrightarrow{\Phi}_v = 8$$

$$g_{22} = \overrightarrow{\Phi}_v \cdot \overrightarrow{\Phi}_v = 17$$

So $g = \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix}$ is the metric tensor at (u, v) = (1, 2).

b) $\overrightarrow{\Phi}_u=(1,0)$, $\overrightarrow{\Phi}_v=(0,1)$ since $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$ are the basis vectors for $T_{(1,2,5)}S$, so:

$$g(\overrightarrow{\Phi}_u, \overrightarrow{\Phi}_v) = (1 \quad 0) \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= (1 \quad 0) \begin{pmatrix} 8 \\ 17 \end{pmatrix} = 8.$$

$$\vec{w}_1 = (2, -3);$$
 $\vec{w}_2 = (-1, 2)$

$$g(\vec{w}_1, \vec{w}_2) = (2 -3) \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$= (2 -3) \begin{pmatrix} 11 \\ 26 \end{pmatrix} = -56.$$

c)
$$D\vec{\Phi}(1,2) = (\vec{\Phi}_u(1,2) \ \vec{\Phi}_v(1,2))$$

 $\vec{v}_1 = (-3,2); \ \vec{v}_2 = (1,-1).$
 $(D\vec{\Phi}(1,2))^* g(\vec{v}_1,\vec{v}_2) = g(D\vec{\Phi}(1,2)\vec{v}_1,D\vec{\Phi}(1,2)\vec{v}_2)$

$$(D\overrightarrow{\Phi}(1,2))(-3,2) = (\overrightarrow{\Phi}_u(1,2) \ \overrightarrow{\Phi}_v(1,2))(-3,2)$$
$$= -3\overrightarrow{\Phi}_u + 2\overrightarrow{\Phi}_v = (-3,2)$$

$$(D\overrightarrow{\Phi}(1,2))(1,-1) = (\overrightarrow{\Phi}_u(1,2) \ \overrightarrow{\Phi}_v(1,2))(1,-1)$$
$$= \overrightarrow{\Phi}_u - \overrightarrow{\Phi}_v = (1,-1).$$

Notice that:

$$D\overrightarrow{\Phi}(1,2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}.$$

So we can write:

$$\left(D\overrightarrow{\Phi}(1,2)\right)(-3 \quad 2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}\begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}.$$

But in the basis $\overrightarrow{\Phi}_u(1,2)=(1,0,2)$ and $\overrightarrow{\Phi}_v(1,2)=(0,1,4)$: $(-3,2,2)=-3\overrightarrow{\Phi}_u+2\overrightarrow{\Phi}_v\,.$

Thus,

$$\left(D \overrightarrow{\Phi}(1,2) \right)^* g(\overrightarrow{v}_1, \overrightarrow{v}_2) = g((-3,2), (1,-1))$$

$$= (-3, 2) \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= (-3, 2) \begin{pmatrix} -3 \\ -9 \end{pmatrix} = -9.$$

We had a theorem that said if v_1,\ldots,v_n is a basis for V and $\varphi_1,\ldots,\varphi_n$ is a dual basis for V^* , i.e. $\varphi_i(v_j)=\delta_{ij}$, then we can write any m tensor as a linear combination of $\varphi_{i_1}\otimes\ldots\otimes\varphi_{i_m}$ where $1\leq i_1,\ldots,i_m\leq n$.

So how do we write the metric tensor as a linear combination of 2-tensors of the form $\varphi_i \otimes \varphi_j$ where $\{\varphi_1, \varphi_2\}$ is the dual basis for $(T_pS)^*$? In this case, $V = T_pS$ and the basis vectors for V are $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$. The dual basis for φ_1 and φ_2 have the properties that:

$$\varphi_1(\overrightarrow{\Phi}_u) = 1$$
 $\varphi_2(\overrightarrow{\Phi}_u) = 0$

$$\varphi_1(\overrightarrow{\Phi}_v) = 0$$
 $\varphi_2(\overrightarrow{\Phi}_v) = 1.$

Note: φ_1 is generally written as du and φ_2 is generally written as dv (i.e. φ_1 and φ_2 are differential forms).

So we would like to be able to write:

$$g = \lambda_1(\varphi_1 \otimes \varphi_1) + \lambda_2(\varphi_1 \otimes \varphi_2) + \lambda_3(\varphi_2 \otimes \varphi_1) + \lambda_4(\varphi_2 \otimes \varphi_2).$$

What are λ_1 , λ_2 , λ_3 , and λ_4 ?

If
$$\vec{v}_1=a_1\overrightarrow{\Phi}_u+b_1\overrightarrow{\Phi}_v$$
 and $\vec{v}_2=a_2\overrightarrow{\Phi}_u+b_2\overrightarrow{\Phi}_v$, then:

$$g((a_1, b_1), (a_2, b_2)) = (a_1 \quad b_1) \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$$
$$= 5a_1a_2 + 8a_1b_2 + 8a_2b_1 + 17b_1b_2.$$

Now let's expand the RHS of the tensor equation:

$$\begin{split} \left(\lambda_{1}(\varphi_{1}\otimes\varphi_{1}) + \lambda_{2}(\varphi_{1}\otimes\varphi_{2}) + \lambda_{3}(\varphi_{2}\otimes\varphi_{1}) \\ &+ \lambda_{4}(\varphi_{2}\otimes\varphi_{2})\right) \left((a_{1},b_{1}),(a_{2},b_{2})\right) \\ &= \lambda_{1}\varphi_{1}(a_{1},b_{1})\varphi_{1}(a_{2},b_{2}) + \lambda_{2}\varphi_{1}(a_{1},b_{1})\varphi_{2}(a_{2},b_{2}) \\ &+ \lambda_{3}\varphi_{2}(a_{1},b_{1})\varphi_{1}(a_{2},b_{2}) + \lambda_{4}\varphi_{2}(a_{1},b_{1})\varphi_{2}(a_{2},b_{2}) \\ &= \lambda_{1}(a_{1})(a_{2}) + \lambda_{2}(a_{1})(b_{2}) + \lambda_{3}(a_{2})(b_{1}) + \lambda_{4}(a_{2})(b_{2}). \end{split}$$

Thus since

$$g((a_1, b_1), (a_2, b_2)) = 5a_1a_2 + 8a_1b_2 + 8a_2b_1 + 17b_1b_2$$

We have:

$$\lambda_1=5,~\lambda_2=8,~\lambda_3=8,~\lambda_4=17$$
 and
$$g=5\varphi_1\otimes\varphi_1+8\varphi_1\otimes\varphi_2+8\varphi_2\otimes\varphi_1+17\varphi_2\otimes\varphi_2$$

or

$$g = 5du \otimes du + 8du \otimes dv + 8dv \otimes du + 17dv \otimes dv.$$