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                            Changing Variables in Subsets of ℝ2 and ℝ3 
 

Let 𝐷∗ be a subset of ℝ2 then 𝑇: 𝐷∗ → ℝ2 is called a change of variables. 

Usually we will be interested in the case where 𝑇 is a continuously differentiable  

function. The image of 𝐷∗ under 𝑇, 𝑇(𝐷∗), is the set of points: 
(𝑥, 𝑦) = 𝑇(𝑥∗, 𝑦∗) for (𝑥∗, 𝑦∗) ∈ 𝐷∗ 

 
Ex.  Let 𝐷∗ ⊆ ℝ2 be the rectangle 𝐷∗ = [0, 1]  ×  [0, 2𝜋]. So, 
 

𝐷∗ = {(𝑟, 𝜃) ∈ ℝ2| 0 ≤ 𝑟 ≤ 1,   0 ≤ 𝜃 ≤ 2𝜋} 
 

 Let 𝑇: 𝐷∗ → ℝ2 by 𝑇(𝑟, 𝜃) = (𝑟 cos 𝜃 , 𝑟 sin 𝜃).  
 

Find 𝑇(𝐷∗). 
 
All of the points of 𝑇(𝐷∗) look like (𝑟 cos 𝜃 , 𝑟 sin 𝜃), where 0 ≤ 𝑟 ≤ 1 

and 0 ≤ 𝜃 ≤ 2𝜋.  

If we let 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, then: 

𝑥2 + 𝑦2 = 𝑟2 cos2 𝜃 + 𝑟2 sin2 𝜃 = 𝑟2 ≤ 1 

So every point (𝑥, 𝑦) in 𝑇(𝐷∗) must have 𝑥2 + 𝑦2 ≤ 1, thus: 

𝑇(𝐷∗) ⊆ the unit disk  

 

But any point in the unit disk can be written as (𝑟 cos 𝜃 , 𝑟 sin 𝜃) for 

some 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤ 2𝜋. 

Thus, 𝑇(𝐷∗) is the unit disk. 
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Ex.  Let  𝐷∗ = [−1, 1]  ×  [−1, 1] ⊆ ℝ2, a square with side length of 2 

centered at the origin.   Let 𝑇(𝑥, 𝑦) = (
(𝑥−𝑦)

2
,

(𝑥+𝑦)

2
).  Find 𝑇(𝐷∗). 

 
First, let’s see what 𝑇 does to the boundary of 𝐷∗. 
 
 

 
 
 
 
 
 
 
 

 

𝑐1(𝑡) = < 1, 𝑡 >  ;  −1 ≤ 𝑡 ≤ 1 
 

𝑇(𝑐1(𝑡)) = (
1−𝑡

2
,

1+𝑡

2
)  ;  −1 ≤ 𝑡 ≤ 1  

So 𝑥 =
1−𝑡

2
 and 𝑦 =

1+𝑡

2
 

 

We can eliminate the 𝑡 by adding the equations to get: 
 

𝑥 + 𝑦 = 1 
 
Since −1 ≤ 𝑡 ≤ 1, we get the portion of the line that starts at   𝑡 = −1 
(i.e. 𝑥 = 1, 𝑦 = 0) and ends at 𝑡 = 1 (i.e. 𝑥 = 0, 𝑦 = 1). 
 

 
                                                                      𝑇 
 
 
 
 
 
 

(1,1) (−1,1) 

(1, −1) (−1, −1) 

𝑐1(𝑡) 

𝐷∗ 

(1,1) 

(1, −1) 

𝑦 = 1 − 𝑥 

(0,1) 

(1,0) 
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Similarly: 

𝑐2(𝑡) = < 𝑡, 1 >            −1 ≤ 𝑡 ≤ 1 
 

𝑐3(𝑡) = < −1, 𝑡 >          −1 ≤ 𝑡 ≤ 1 
 

          𝑐4(𝑡) = < 𝑡, −1 >          −1 ≤ 𝑡 ≤ 1. 
 

          𝑇(𝑐2(𝑡)) =  (
𝑡−1

2
,

𝑡+1

2
) ;    or  𝑥 − 𝑦 = −1, 

a line segment starting at (−1, 0) ending at (0, 1). 
 

          𝑇(𝑐3(𝑡)) =  (
−1−𝑡

2
,

−1+𝑡

2
) ;   or  𝑥 + 𝑦 = −1, 

a line segment starting at ( 0, −1) ending at (−1, 0). 
 

          𝑇(𝑐4(𝑡)) =  (
𝑡+1

2
,

𝑡−1

2
) ;     or  𝑥 − 𝑦 = 1, 

a line segment starting at ( 0, −1) ending at (1, 0). 
 
 
 
 
 
                                                    
 
 
 
 
 
 
 
 
 So 𝑇 rotates 𝐷∗ by 45° counterclockwise. 
 
 

𝑐1 
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𝑐3 

𝑐4 

𝐷∗ 

𝑇(𝑐1) 

𝑇(𝑐4) 𝑇(𝑐3) 

𝑇(𝑐2) 
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(0, −1) 

𝑇 
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Def. A mapping 𝑇: 𝐷∗ ⊆ ℝ2 → ℝ2 is one-to-one if for:  
 

(𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐷∗ 
 
 

 𝑇(𝑢, 𝑣) = 𝑇(𝑢′, 𝑣′) implies that 𝑢 = 𝑢′and 𝑣 = 𝑣′. 
 
 Thus, 𝑇 is 1-1 if two different points in its domain are never mapped to the  

            same point. 
 
Ex.  Let  𝑇: ℝ2 → ℝ2 by 𝑇(𝑥, 𝑦) = (𝑥2, 𝑥4 + 𝑦).  Show that 𝑇 is not 1-1. 

 
 
 

      𝑇 is not 1-1 because 𝑇(1, 2) = 𝑇(−1, 2) (for example) but  
     (1, 2) ≠ (−1, 2). 
 
 
Ex.  Consider the polar coordinate mapping: 
 
 

𝑇: ℝ2 → ℝ2 by  𝑇(𝑟, 𝜃) =  (𝑟 cos 𝜃 , 𝑟 sin 𝜃) 
 
 

 Show 𝑇 is not 1-1 if the domain is all of ℝ2.  
 

Is 𝑇 1-1 if the domain is 𝐷∗ = [0, 1]  × [0,2𝜋)? 

 
 

𝑇(1, 0) = 𝑇(1, 2𝜋) since: 
 

𝑇(1, 0) = (1(cos 0) , 1(sin 0)) = (1, 0) 
 

𝑇(1, 2𝜋) = (1(cos 2𝜋) , 1(sin 2𝜋)) = (1, 0) 
 

So 𝑇 is not 1-1 on ℝ2 
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 If the domain is 𝐷∗ = [0, 1]  × [0,2𝜋) we still have:  
 
 

𝑇(0, 𝜃1) = 𝑇(0, 𝜃2) = (0, 0) for any 0 ≤ 𝜃1, 𝜃2 < 2𝜋 
 
 

 So 𝑇 is still not 1-1.  
 
 
 
 
                                                    
 
 
 
 
 
 
 
 It is 1-1 if: 
 

𝐷∗ = (0, 1]  ×  [0, 2𝜋). 
 
 
 

Ex.  Show that 𝑇: ℝ2 → ℝ2 given by 𝑇(𝑥, 𝑦) = (
𝑥−𝑦

2
,

𝑥+𝑦

2
) is 1-1. 

 
 

            We must show that if 𝑇(𝑥, 𝑦) = 𝑇(𝑥′, 𝑦′), then 𝑥 = 𝑥′ and 𝑦 = 𝑦′. 
 

𝑇(𝑥, 𝑦) = (
𝑥−𝑦

2
,

𝑥+𝑦

2
)  

 

  𝑇(𝑥′, 𝑦′) = (
𝑥′−𝑦′

2
,

𝑥′+𝑦′

2
)  

 

(
𝑥−𝑦

2
,

𝑥+𝑦

2
) = (

𝑥′−𝑦′

2
,

𝑥′+𝑦′

2
)  

𝑟 

𝜃 

2𝜋 

𝑇(0, 𝜃) = (0,0) 
𝑇 
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𝑥−𝑦

2
=

𝑥′−𝑦′

2
  

 

𝑥+𝑦

2
=

𝑥′+𝑦′

2
  

 
   OR 

 
𝑥 − 𝑦 = 𝑥′ − 𝑦′ 
𝑥 + 𝑦 = 𝑥′ + 𝑦′ 

2𝑥 = 2𝑥′ 
 

𝑥 = 𝑥′ 
 

  Subtracting the equations we get: 
 

𝑥 − 𝑦 = 𝑥′ − 𝑦′ 
𝑥 + 𝑦 = 𝑥′ + 𝑦′ 

−2𝑦 = −2𝑦′ 
 

𝑦 = 𝑦′ 
  
 Thus, (𝑥, 𝑦) = (𝑥′, 𝑦′) and 𝑇 is 1-1 on ℝ2 
 
Def.  𝑇: 𝐷∗ ⊆ ℝ2 → 𝐷.  The mapping 𝑇 is onto 𝐷 if for every point 

 (𝑥, 𝑦) ∈ 𝐷 there exists at least one point (𝑢, 𝑣) ∈ 𝐷∗ such that 

 𝑇(𝑢, 𝑣) = (𝑥, 𝑦).  
 

 Thus, 𝑇 is onto if we can solve the equation:    𝑇(𝑢, 𝑣) = (𝑥, 𝑦) 

 where (𝑥, 𝑦) ∈ 𝐷 and (𝑢, 𝑣) ∈ 𝐷∗. If the solution is always unique, 

 then 𝑇 is also 1-1. 
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Ex.   Determine if the following functions 𝑇: ℝ2 → ℝ2 are 1-1 and/or onto. 

a) 𝑇(𝑥, 𝑦) = (𝑒𝑥 , 𝑦) 

b) 𝑇(𝑟, 𝜃) = (𝑟 cos 𝜃 , 𝑟 sin 𝜃) 

c) 𝑇(𝑥, 𝑦) = (𝑥2, 𝑦) 

d) 𝑇(𝑥, 𝑦) = (√𝑥
3

, √𝑦3 ) 

 

a) 𝑒𝑥 > 0 so 𝑇(𝑥, 𝑦) = (𝑒𝑥 , 𝑦) can’t be onto since, for example, there 

          is no (𝑥, 𝑦) such that 𝑇(𝑥, 𝑦) = (𝑒𝑥 , 𝑦) = (−1,1).  

 

 𝑇 is 1-1 on ℝ2 since if 𝑇(𝑥, 𝑦) = 𝑇(𝑥′, 𝑦′) and           

 (𝑒𝑥 , 𝑦) = (𝑒𝑥′
, 𝑦′), then 𝑒𝑥 = 𝑒𝑥′

⇒ 𝑥 = 𝑥′, since 

𝑓(𝑥) = 𝑒𝑥 is strictly increasing, so it’s 1-1. And 𝑦 = 𝑦′ so we 

 can say (𝑥, 𝑦) = (𝑥′, 𝑦′). 

 

b) 𝑇 is onto since if 𝑇(𝑟, 𝜃) = (𝑎, 𝑏) for any (𝑎, 𝑏) ∈ ℝ2, we have: 

 𝑎 = 𝑟 cos 𝜃  and   𝑏 = 𝑟 sin 𝜃. 

If 𝑎 = 0, then 𝑇 (𝑏,
𝜋

2
) = (0, 𝑏).   

If 𝑎 > 0 then let  𝜃 = tan−1(
𝑏

𝑎
) , 𝑟 = √𝑎2 + 𝑏2,  then 

                         𝑇(𝑟, 𝜃) = (𝑎, 𝑏).   

If 𝑎 < 0 then let  𝜃 = 𝜋 + tan−1(
𝑏

𝑎
) , 𝑟 = √𝑎2 + 𝑏2,  then 

                         𝑇(𝑟, 𝜃) = (𝑎, 𝑏).   

 
 

𝑇 is not 1-1 since 𝑇(0, 𝜃) = (0, 0) for all 𝜃.    

 

c) 𝑇(𝑥, 𝑦) = (𝑥2, 𝑦) is neither 1-1 nor onto. 

     𝑇(−1, 𝑦) = 𝑇(1, 𝑦) so 𝑇 is not 1-1.  

 

𝑥2 ≥ 0, so there is no (𝑥, 𝑦) such that 𝑇(𝑥, 𝑦) = (𝑥2, 𝑦) = (−1,1). 

Thus 𝑇 is not onto. 
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d) 𝑇(𝑥, 𝑦) = (√𝑥
3

, √𝑦3 ) is 1-1 and onto.  

 

𝑇 is 1-1 since if 𝑇(𝑥, 𝑦) = 𝑇(𝑥′, 𝑦′), then: 
 

(√𝑥
3

, √𝑦3 ) = (√𝑥′3
, √𝑦′3 ) 

 

                                    √𝑥
      3

= √𝑥′3
            √𝑦3 = √𝑦′3   

 

𝑥 = 𝑥′                   𝑦 = 𝑦′ 

 So (𝑥, 𝑦) = (𝑥′, 𝑦′) and 𝑇 is 1-1. 
 

 To show 𝑇 is onto, let (𝑎, 𝑏) ∈ ℝ2. Then we must show that we can find  

            (𝑥, 𝑦) ∈ ℝ2 such that 𝑇(𝑥, 𝑦) = (𝑎, 𝑏). 
 

𝑇(𝑥, 𝑦) = (√𝑥
3

, √𝑦3 ) = (𝑎, 𝑏) 
 

                                           √𝑥
3

= 𝑎  ;              √𝑦3 = 𝑏 

                                              𝑥 = 𝑎3 ;                 𝑦 = 𝑏3 
 

 So 𝑇(𝑎3, 𝑏3) = (𝑎, 𝑏) and 𝑇 is onto. 

 

 

 

We can extend the notion of a change of variables to subsets of 𝐷∗
⊆ ℝ3 as a 

map 𝑇: 𝐷∗ → ℝ3.   

 

To show 𝑇: ℝ3 → ℝ3 is 1-1 you must show if:  

𝑇(𝑥, 𝑦, 𝑧) = 𝑇(𝑥′, 𝑦′, 𝑧′), then 𝑥 = 𝑥′, 𝑦 = 𝑦′, and 𝑧 = 𝑧′. 

 
 

To show 𝑇 is onto you must show given any (𝑎, 𝑏, 𝑐) ∈ ℝ3 that you can find 

𝑥, 𝑦, 𝑧 such that: 

𝑇(𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐). 
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Ex.  Determine if the map 𝑇: ℝ3 → ℝ3 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦3, 𝑥𝑧) is  
       1-1 and/or onto. 
 
 
     𝑇 is not 1-1. 
               𝑇(𝑥, 𝑦, 𝑧) = 𝑇(𝑥′, 𝑦′, 𝑧′) 

             (𝑥, 𝑦3, 𝑥𝑧) = (𝑥′, 𝑦′3
, 𝑥′𝑧′)  

 
                   𝑥 = 𝑥′ 
                 𝑦3 = 𝑦′3 ⟹   𝑦 = 𝑦′ 
                  𝑥𝑧 = 𝑥′𝑧′,   but this does not imply that 𝑧 = 𝑧′, since if 𝑥 = 𝑥′ = 0 

                                            the equation will be true for all values of 𝑧 and 𝑧′. 
 
                In particular,  
                               𝑇(0,1,1) = (0,1,0) = 𝑇(0,1,3). 

                Thus 𝑇 is not 1-1. 
 
        𝑇 is not onto. 

            Suppose that  𝑇(𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐).  Then we have: 

                                    (𝑥, 𝑦3, 𝑥𝑧) = (𝑎, 𝑏, 𝑐) 
                         𝑥 = 𝑎 

                       𝑦3 = 𝑏  ⟹ 𝑦 = √𝑏
3

 
                       𝑥𝑧 = 𝑐  ⟹ 𝑎𝑧 = 𝑐  
              But if 𝑎 = 0, and 𝑐 ≠ 0, then there is no 𝑧 such that 𝑎𝑧 = 𝑐. 
              In particular, there is no (𝑥, 𝑦, 𝑧) such that 𝑇(𝑥, 𝑦, 𝑧) = (0,1,3). 


