Reversing the Order of Integration

We could have also done an earlier example:
Find the volume of the solid under the paraboloid z = 3x2 + y2 and
above the region D in the x, y plane bounded by x = y2 andy = x.
by doing the following:
x=y? - tfx=y

Here, we are reversing the order of integration from our first approach.
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Ex. Find the volume of the tetrahedron bounded by the planes:
Z =X, y = 2Xx, x+y=3, z=0.

Draw the 3 dimensional solid and the region D, which lies below the solid
in the xy plane. But first let’s draw D:

To find D, we need to find where each of the four planes intersects the xy
plane.

z = 0 is the xy plane.
y = 2x and x + y = 3 are the intersections with the xy plane
Z = X intersects the xy plane when z = 0:

i.e. when x = 0 ; y- axis

We need to find the intersections of the lines: y = 2x, x +y = 3,

and x = 0. =37
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This could also be done as an x-simple integral by reversing the order of
integration (but it’s harder that way).
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Sometimes it’s difficult (or impossible) to evaluate a double integral when given
an iterated integral but is easier to do if you change the order of integration.

Ex. Evaluate f;:ol f;:/l} (cosy3) dy dx.

There is no elementary antiderivative for cos y3 in y terms.
Draw region of integration:




Now reverse the order of integration:
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- = §sin(1) — §sin(0) = §sin(1).

Ex. Evaluate f f y/2(e ) dx dy by reversing the order of integration.
Start by drawmg the region over which we’re integrating.
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=1 px=cos™?! . .
Ex. Evaluate f;}:o [775%% Y (sinx)V1 + sin? x dx dy.

x=0

Although it is possible to find an anti-derivative for (sin x)V1 + sin? x,
it’s much easier if we reverse the order of integration:
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Properties of Double Integrals:
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If f(x,y) = g(x,y), then:
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If D =D; UD,, where D; N D, = @:
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ﬂldA = area of D
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For 1 variable:

b
j 1dx = b — a = length of interval.
a



