The Double Integral over more General Regions

Instead of integrating over a rectangle, suppose the region looks like:

These regions are called **y-simple** (i.e. $g_1(x) \le y \le g_2(x)$).

How do we calculate $\iint_D f(x,y) dA$? When D was a rectangle we did it with an iterated integral.

$$\iint_{D} f(x,y) \, dA = \int_{x=a}^{x=b} \left[\int_{y=c}^{y=d} f(x,y) \, dy \right] dx$$

For a region, D, bounded by $y=g_2(x),\ y=g_1(x),\ x=a,\ x=b$, let R be a rectangle containing D.

Define:

$$F(x,y) = f(x,y) \text{ if } (x,y) \in D$$

= 0 if $(x,y) \in R$ but not in D

Define: $\iint_D f(x,y) dA = \iint_R F(x,y) dA$. By Fubini's Theorem:

$$\iint\limits_R F(x,y) \ dA = \int_a^b \int_c^d F(x,y) \ dy \ dx = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \ dx.$$

Notice that $\int_a^b \int_{g_1(x)}^{g_2(x)} 1 \ dy \ dx$ =area between $y=g_1(x), \ y=g_2(x),$ where $a \le x \le b$.

Ex. Evaluate $\iint_D (x-2y) dA$, where D is the region bounded by:

$$y = 2 - x^2$$
, $y = x^2$.

$$2 - x^2 = x^2$$
$$2 = 2x^2$$
$$x = \pm 1$$

$$\iint\limits_{D} (x - 2y) \, dA = \int_{x=-1}^{x=1} \int_{y=x^2}^{y=2-x^2} (x - 2y) \, dy \, dx$$

$$= \int_{-1}^{1} (xy - y^2) \Big|_{y=x^2}^{y=2-x^2} dx$$

$$= \int_{-1}^{1} (x(2 - x^2) - (2 - x^2)^2) - (x(x^2) - (x^2)^2) dx$$

$$= \int_{-1}^{1} 2x - x^3 - (4 - 4x^2 + x^4) - (x^3 - x^4) dx$$

$$= \int_{-1}^{1} 2x - x^3 - 4 + 4x^2 - x^4 - x^3 + x^4 dx$$

$$= \int_{-1}^{1} -2x^3 + 4x^2 + 2x - 4 dx$$

$$= -\frac{1}{2}x^4 + \frac{4}{3}x^3 + x^2 - 4x\Big|_{-1}^{1}$$

$$= \left(-\frac{1}{2}(1) + \frac{4}{3} + 1 - 4\right) - \left(-\frac{1}{2}(1) - \frac{4}{3} + 1 + 4\right)$$

$$= -\frac{7}{2} + \frac{4}{3} - \left(\frac{9}{2} - \frac{4}{3}\right) = -8 + \frac{8}{3} = -\frac{16}{3}.$$

- Ex. Find the limits of integration in the previous example if D Is bounded by
 - a. $y = 2 x^2$ and the x axis
 - b. y = x and $y = x^2$.
 - a. $y = 2 x^2$ intersects the x axis when $2 x^2 = 0$ or $x = \pm \sqrt{2}$.

- $\iint_D (x 2y) dA = \int_{x = -\sqrt{2}}^{x = \sqrt{2}} \int_{y = 0}^{y = 2 x^2} (x 2y) dy dx.$
 - b. y = x and $y = x^2$ intersect when

$$x = x^2$$
$$x - x^2 = 0$$

$$x(1-x)=0$$

$$x = 0,1$$

$$\iint_D (x - 2y) dA = \int_{x=0}^{x=1} \int_{y=x^2}^{y=x} (x - 2y) dy dx.$$

Ex. Sketch the region D, over which the following integral is being taken:

$$\int_{x=-1}^{x=2} \int_{y=x}^{y=e^{x}} (x+y) \, dy \, dx$$

$$y = e^{x}$$

$$y = e^{x}$$

$$y = x$$

Ex. Evaluate the following integral if the region D is the interior of the triangle whose vertices are (-1,0), (1,0), and (0,1).

$$\iint\limits_{D} (x+2y) \, dA$$

- 1. Start by drawing D.
- 2. Find the equations of the sides of the triangle.
- 3. Notice that the "top curve" changes as x goes from -1 to 1, so we need to break this into two integrals.

Equations of the sides: y = x + 1, y = -x + 1, y = 0.

$$\iint_{D} (x+2y)dA =$$

$$= \int_{x=-1}^{x=0} \int_{y=0}^{y=x+1} (x+2y) \, dy \, dx + \int_{x=0}^{x=1} \int_{y=0}^{y=-x+1} (x+2y) \, dy \, dx$$

$$= \int_{x=-1}^{x=0} (xy+y^{2})|_{y=0}^{y=x+1} \, dx + \int_{x=0}^{x=1} (xy+y^{2})|_{y=0}^{y=-x+1} \, dx$$

$$= \int_{x=-1}^{x=0} (x(x+1) + (x+1)^{2}) \, dx + \int_{x=0}^{x=1} [x(-x+1) + (-x+1)^{2}] \, dx$$

$$= \int_{x=-1}^{x=0} (2x^{2} + 3x + 1) \, dx + \int_{x=0}^{x=1} (-x+1) \, dx$$

$$= \left(\frac{2x^{3}}{3} + \frac{3x^{2}}{2} + x\right)\Big|_{x=-1}^{x=0} + \left(-\frac{x^{2}}{2} + x\right)\Big|_{x=0}^{x=1}$$

$$= 0 - \left(-\frac{2}{3} + \frac{3}{2} - 1\right) + \left(-\frac{1}{2} + 1\right) - 0$$

$$= \frac{1}{6} + \frac{1}{2} = \frac{2}{3}.$$

If *D* looks like:

we call these regions x-simple, i.e. $h_1(y) \le x \le h_2(y)$ and

$$\iint\limits_{D} f(x,y) \ dA = \int_{y=c}^{y=d} \left[\int_{x=h_{1}(y)}^{x=h_{2}(y)} f(x,y) \ dx \right] dy.$$

Ex. Find the volume of the solid under the paraboloid $z=3x^2+y^2$ and above the region D in the x, y plane bounded by $x=y^2$ and y=x.

$$y^{2} = y \Rightarrow y^{2} - y = 0$$

$$y(y - 1) = 0; y = 0, 1$$

$$x = y^{2}$$

$$D$$

$$y = x$$

$$(0,0)$$

$$y = x$$

$$V = \int_{y=0}^{y=1} \int_{x=y^2}^{x=y} (3x^2 + y^2) \, dx \, dy = \int_{y=0}^{y=1} (x^3 + xy^2) \Big|_{x=y^2}^{x=y} \, dy$$

$$= \int_{y=0}^{y=1} (y^3 + y^3) - (y^6 + y^4) \, dy = \int_{y=0}^{y=1} (2y^3 - y^6 - y^4) \, dy$$

$$= \left(\frac{y^4}{2} - \frac{y^7}{7} - \frac{y^5}{5}\right) \Big|_{y=0}^{y=1} = \left(\frac{1}{2} - \frac{1}{7} - \frac{1}{5}\right) - 0$$

$$= \frac{35}{70} - \frac{10}{70} - \frac{14}{70} = \frac{11}{70}.$$

Ex. Evaluate the following integral if the region D is the interior of the triangle whose vertices are (-1,0), (1,0), and (0,1) as an x-simple region.

$$\iint\limits_{D} (x+2y) \, dA$$

To evaluate this integral as an x-simple region we need to express the sides of the triangle as x in terms of y. That is

$$x = y - 1
 x = -y + 1$$

$$x = y - 1
 x = y - 1$$

$$(-1,0)$$

$$(1,0)$$

Notice that we no longer need to break this integral up into 2 integrals as we did when we treated it as a γ -simple region.

$$\iint_{D} (x+2y)dA = \int_{y=0}^{y=1} \int_{x=y-1}^{x=-y+1} (x+2y) \, dx \, dy$$

$$= \int_{y=0}^{y=1} \left(\frac{1}{2}x^{2} + 2xy\right) \Big|_{x=y-1}^{x=-y+1} \, dy$$

$$= \int_{y=0}^{y=1} \frac{1}{2} (-y+1)^{2} + 2(-y+1)y - \left[\frac{1}{2}(y-1)^{2} + 2(y-1)y\right] dy$$

Multiplying out and combining terms we get:

$$= \int_{y=0}^{y=1} (-4y^2 + 4y) dy$$
$$= \left(-\frac{4}{3}y^3 + 2y^2 \right) \Big|_{0}^{1} = -\frac{4}{3} + 2 = \frac{2}{3}.$$

Ex. Using a double integral find the area of a circle of radius 2.

Equation of circle of radius 2 is: $x^2 + y^2 = 4$.

Treating the region as y- simple we get:

Equation of upper semi-circle:

$$y = \sqrt{4 - x^2}.$$

Equation of lower semi-circle:

$$y = -\sqrt{4 - x^2}.$$

Area =
$$\iint_D 1 dA = \int_{x=-2}^{x=2} \int_{y=-\sqrt{4-x^2}}^{y=\sqrt{4-x^2}} 1 dy dx$$

= $\int_{x=-2}^{x=2} y \Big|_{y=-\sqrt{4-x^2}}^{y=\sqrt{4-x^2}} dx$
= $\int_{x=-2}^{x=2} (\sqrt{4-x^2} + \sqrt{4-x^2}) dx$
= $\int_{x=-2}^{x=2} (2\sqrt{4-x^2}) dx$

Now let
$$x=2sint$$
 and $dx=2(cost)dt$. When $x=-2$, $t=-\frac{\pi}{2}$, when $x=2$, $t=\frac{\pi}{2}$.

$$= \int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}} 2(\sqrt{4-4\sin^2 t}) (2\cos t) dt$$

$$=8\int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}} (\sqrt{1-\sin^2 t}) (\cos t) dt$$

$$=8\int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}} \left(\sqrt{\cos^2 t}\right) (\cos t) dt$$

$$=8\int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}}\cos^2 t \, dt$$

$$=8\int_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}} \left(\frac{1}{2} + \frac{1}{2}\cos 2t\right) dt = 8\left(\frac{1}{2}t + \frac{1}{4}\sin 2t\right)\Big|_{t=-\frac{\pi}{2}}^{t=\frac{\pi}{2}}$$

$$=8\left[\left(\frac{\pi}{4}+0\right)-\left(-\frac{\pi}{4}+0\right)\right]=4\pi.$$