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Vector Fields 
 

Def.  A vector field in ℝ𝑛 is a map 𝐹⃗: 𝐴 ⊆ ℝ𝑛 → ℝ𝑛 that assigns to each 

point 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) ∈ 𝐴, a vector𝐹⃗(𝑥) ∈ ℝ𝑛. 

If 𝑛 = 2, we call 𝐹⃗ a vector field in the plane. 

If 𝑛 = 3, we call 𝐹⃗ a vector field in space. 

 

We can always write a vector field in space in the form: 

 

𝐹⃗(𝑥, 𝑦, 𝑧) = 𝐹1(𝑥, 𝑦, 𝑧)𝑖 + 𝐹2(𝑥, 𝑦, 𝑧)𝑗 + 𝐹3(𝑥, 𝑦, 𝑧)𝑘⃗⃗ 
or 

                  𝐹⃗(𝑥, 𝑦, 𝑧) = < 𝐹1(𝑥, 𝑦, 𝑧),  𝐹2(𝑥, 𝑦, 𝑧),  𝐹3(𝑥, 𝑦, 𝑧) >. 

 

 

Notice that this is different from real-valued functions from ℝ3 → ℝ (which we 

will sometimes call a scalar field). 

 

 

Ex.  𝐹⃗(𝑥, 𝑦) = 2𝑖 − 3𝑗 = < 2, −3 > is a vector field in the plane drawn as 
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Ex.  𝐹⃗(𝑥, 𝑦) = 𝑦𝑖 − 𝑥𝑗 = < 𝑦, −𝑥 > is a vector field in the plane  

Point              𝐹⃗(𝑥, 𝑦)    

(1,0)             < 0, −1 > 

(1, −1)         < −1, −1 > 

(0, −2)           < −2,0 > 

(−2, −2)       < −2,2 >  

(−4,0)             < 0,4 > 

(−4,4)            < 4,4 >   

(0,8)                < 8,0 > 

(8,8)             < 8, −8 > 

 

 

 

 
 
 
 
 

Ex.   𝐹⃗(𝑥, 𝑦, 𝑧) = (𝑥2𝑧)𝑖 + 𝑒𝑦𝑗 + sin(𝑥𝑧)𝑘⃗⃗ is a vector field on ℝ3. 
 

        𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑧 + 𝑒𝑦 + sin(𝑥𝑧) is a real-valued function on ℝ3. 
 
 

   Notice that for every value of 𝑥, 𝑦, 𝑧, 𝐹⃗(𝑥, 𝑦, 𝑧) gives us a vector in ℝ3. 
 

   For every value of 𝑥, 𝑦, 𝑧, 𝑓(𝑥, 𝑦, 𝑧) gives us a real number, not a     

   vector in ℝ3. 
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Ex.  A mass, 𝑀, at the origin in ℝ3 exerts a force on a mass, 𝑚, located at        

 𝑟 = < 𝑥, 𝑦, 𝑧 > with a magnitude of 
𝐺𝑚𝑀

|𝑟|2 , where 𝐺 is a gravitational constant 

and the direction is toward the origin. Thus, we can write the force field as: 

 

𝐹⃗(𝑥, 𝑦, 𝑧) = (
𝐺𝑚𝑀

|𝑟|2 ) (−
𝑟

|𝑟|
) = − (

𝐺𝑚𝑀

|𝑟|3 ) 𝑟  , 

 
𝑟

|𝑟|3 = <
𝑥

(𝑥2+𝑦2+𝑧2)
3
2

 ,
𝑦

(𝑥2+𝑦2+𝑧2)
3
2

 ,
𝑧

(𝑥2+𝑦2+𝑧2)
3
2

> . 

 
 

So we can write 𝐹⃗(𝑥, 𝑦, 𝑧) as: 
 

𝐹⃗(𝑥, 𝑦, 𝑧) = <
−𝐺𝑚𝑀𝑥

(𝑥2+𝑦2+𝑧2)
3
2

 ,
−𝐺𝑚𝑀𝑦

(𝑥2+𝑦2+𝑧2)
3
2

 ,
−𝐺𝑚𝑀𝑧

(𝑥2+𝑦2+𝑧2)
3
2

>.  

   
 
 
The gradient of a real-valued function is a vector field.  

 
Def.  If 𝑓: ℝ3 → ℝ, then the gradient of a 𝑓, ∇𝑓, is defined to be:  
 

∇𝑓(𝑥, 𝑦, 𝑧) = < 𝑓𝑥(𝑥, 𝑦, 𝑧), 𝑓𝑦(𝑥, 𝑦, 𝑧), 𝑓𝑧(𝑥, 𝑦, 𝑧) >  
 

                                       = (𝑓𝑥)𝑖 + (𝑓𝑦)𝑗 + (𝑓𝑧)𝑘⃗⃗ 

 
 
Ex.  𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑒𝑦𝑧 + 𝑧2 find the vector field ∇𝑓. 
 
 

∇𝑓 =
𝜕

𝜕𝑥
(𝑥𝑒𝑦𝑧 + 𝑧2)𝑖 +

𝜕

𝜕𝑦
(𝑥𝑒𝑦𝑧 + 𝑧2)𝑗 +

𝜕

𝜕𝑧
(𝑥𝑒𝑦𝑧 + 𝑧2)𝑘⃗⃗  

 

                  = (𝑒𝑦𝑧)𝑖 + (𝑥𝑧𝑒𝑦𝑧)𝑗 + (𝑥𝑦𝑒𝑦𝑧 + 2𝑧)𝑘⃗⃗. 
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Def.   A vector field,𝑉⃗⃗, that is the gradient of a function 𝑓: ℝ𝑛 → ℝ, i.e.         

        𝑉⃗⃗ = ∇𝑓, is called a gradient vector field.  
 
Not all vector fields are gradient vector fields. However, the ones that are 

gradient vector fields turn out to have special properties (which you will see if you 

take vector analysis). So given a vector field we might ask if it’s a gradient vector 

field.  

 
 

Ex.  Show that the vector field 𝑉⃗⃗(𝑥, 𝑦) = 𝑦2𝑖 − 𝑥2𝑗  is not a gradient vector  
        field. 

 
 

 To be a gradient vector field 𝑉⃗⃗ = ∇𝑓 for some function 𝑓: 
 

𝑉⃗⃗(𝑥, 𝑦) = 𝑦2𝑖 − 𝑥2𝑗 = 𝑓𝑥𝑖 + 𝑓𝑦𝑗. 
 
 

 But if 𝑓𝑥 = 𝑦2 and 𝑓𝑦 = −𝑥2, we would need 𝑓𝑥𝑦 = 𝑓𝑦𝑥 since 𝑓𝑥 , 𝑓𝑦 

 have continuous derivatives. 
 

 However, 𝑓𝑥𝑦 = 2𝑦 and 𝑓𝑦𝑥 = −2𝑥, which are only equal at (0, 0) 

 So 𝑉⃗⃗ ≠ ∇𝑓. 

 

 

Ex.  Show that the vector field 𝐹⃗(𝑥, 𝑦, 𝑧) = < 𝑥, 𝑦, 𝑧2 > is a gradient vector  

        field. 

 

         We need to find a function 𝑓: ℝ3 → ℝ such that: 

∇𝑓 = < 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 > = < 𝑥, 𝑦, 𝑧2 > 

 In other words:                   

           𝑓𝑥 = 𝑥;        𝑓𝑦 = 𝑦;        𝑓𝑧 = 𝑧2. 
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Since this is a relatively simple set of partial differential equation, we can 

“guess” an answer that works: 

 

𝑓(𝑥, 𝑦, 𝑧) =
1

2
𝑥2 +

1

2
𝑦2 +

1

3
𝑧3.  

 

It’s easy to check that ∇𝑓 = 𝐹⃗(𝑥, 𝑦, 𝑧) = < 𝑥, 𝑦, 𝑧2 > and so 

𝐹⃗(𝑥, 𝑦, 𝑧) = < 𝑥, 𝑦, 𝑧2 > is a gradient vector field. 

 

 

Ex.  The vector field (called the gravitational vector field) given by: 
 

𝐹⃗(𝑥, 𝑦, 𝑧) = <
−𝐺𝑚𝑀𝑥

(𝑥2+𝑦2+𝑧2)
3
2

 ,
−𝐺𝑚𝑀𝑦

(𝑥2+𝑦2+𝑧2)
3
2

 ,
−𝐺𝑚𝑀𝑧

(𝑥2+𝑦2+𝑧2)
3
2

>  

 

 is a gradient vector field since if 𝑓(𝑥, 𝑦, 𝑧) = 
𝑚𝑀𝐺

(𝑥2+𝑦2+𝑧2)
1
2

 

 then, ∇𝑓 = 𝐹⃗. 
 
 

 

Flow Lines 
 

Def.   If 𝐹⃗ is a vector field, a flow line for 𝐹⃗ is a path 𝑐(𝑡) such that: 

𝑐′(𝑡) = 𝐹⃗(𝑐(𝑡)). 
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Flow lines show up in the study of differential equations. 
 

If       𝑐(𝑡) = < 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) > and   

𝐹⃗(𝑥, 𝑦, 𝑧) = < 𝑃(𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧) >, then: 

 
 

     𝑐′(𝑡) =< 𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡) >  and 
 

𝐹⃗(𝑐(𝑡)) = < 𝑃(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), 𝑄(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), 𝑅(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) >. 

 

So a flow line is a solution to the system of differential equations: 

 

                                                

                                        𝑐′(𝑡) = 𝐹⃗(𝑐(𝑡)) 

 

𝑥′(𝑡) = 𝑃(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

𝑦′(𝑡) = 𝑄(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

 𝑧′(𝑡) = 𝑅(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)). 

 

 

Ex.  Show that 𝑐(𝑡) = < 𝑒2𝑡 , log|𝑡| ,
1

𝑡
> , 𝑡 ≠ 0, is a flow line for: 

𝐹⃗(𝑥, 𝑦, 𝑧) = < 2𝑥, 𝑧, −𝑧2 >. 

 
 

We need to show that 𝑐′(𝑡) = 𝐹⃗(𝑐(𝑡)): 
 

    𝑐′(𝑡) = < 2𝑒2𝑡 ,
1

𝑡
, −

1

𝑡2 >  
 

𝐹⃗(𝑐(𝑡)) = < 2𝑒2𝑡 ,
1

𝑡
, −

1

𝑡2 >   

 

So 𝑐′(𝑡) = 𝐹⃗(𝑐(𝑡)) and 𝑐(𝑡) is a flow line for 𝐹⃗. 
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Ex.  Show that 𝑐(𝑡) =< 𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡, 𝑒𝑡 > is a flow line for: 

𝐹⃗(𝑥, 𝑦, 𝑧) = < 𝑦, −𝑥, 𝑧 >. 

 

  We need to show that 𝑐′(𝑡) = 𝐹⃗(𝑐(𝑡)): 
 

     𝑐′(𝑡) = < 𝑐𝑜𝑠𝑡, −𝑠𝑖𝑛𝑡, 𝑒𝑡 >  
 

𝐹⃗(𝑐(𝑡)) = < 𝑐𝑜𝑠𝑡, −𝑠𝑖𝑛𝑡,  𝑒𝑡 >   

 

So 𝑐′(𝑡) = 𝐹⃗(𝑐(𝑡)) and 𝑐(𝑡) is a flow line for 𝐹⃗. 

 

 


