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                                       Extrema of Functions of 2 Variables 
 
 
For functions of one variable, we know how to find relative maxima and minima. 

1. Find all critical numbers        (𝑓′(𝑎) = 0 or 𝑓′(𝑎) is undefined,  
but "𝑎" is in the domain of 𝑓(𝑥))   

2. Second derivative test:            

𝑓′′(𝑎) < 0 ⇒ local max 
𝑓′′(𝑎) > 0 ⇒ local min 

 
We also found absolute maxima and minima on a closed interval by checking the 
value at critical points and the endpoints.  

 
 
 
 
 
 
 
 
 
 
 
 
 
We want to do similar things for functions of two variables. 
 
Def.   A function of 2 variables has a local maximum at (𝑎, 𝑏) if 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑎, 𝑏) 
when (𝑥, 𝑦) is near (𝑎, 𝑏), in that case the number 𝑓(𝑎, 𝑏) is called a local 
maximum value.  

If 𝑓(𝑥, 𝑦) ≥ 𝑓(𝑎, 𝑏) when (𝑥, 𝑦) is near (𝑎, 𝑏), then 𝑓(𝑎, 𝑏) is called a local 
minimum value. 

 If the inequalities hold for all (𝑥, 𝑦) in the domain of 𝑓(𝑥, 𝑦), then 𝑓 has an 
absolute maximum (or minimum) at (𝑎, 𝑏). 
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Theorem:  If 𝑓 has a local maximum or minimum at (𝑎, 𝑏) and the first   

        partial derivatives exist at (𝑎, 𝑏), then: 
𝑓𝑥(𝑎, 𝑏) = 0  and  𝑓𝑦(𝑎, 𝑏) = 0. 

 
  This is the analogue to one variable where if 𝑎 is a local   

                    maximum or minimum and 𝑓′(𝑎) exists, then 𝑓′(𝑎) = 0.  
 

         
Proof:  Let 𝑔(𝑥) = 𝑓(𝑥, 𝑏). If 𝑓 has a local max or min at (𝑎, 𝑏), then so        
             does 𝑔(𝑥). Thus, 𝑔′(𝑎) = 0 but 𝑔′(𝑎) = 𝑓𝑥(𝑎, 𝑏) = 0. 
 
 By a similar argument, if 𝑓 has a local max or min at (𝑎, 𝑏), then 
 𝑓𝑦(𝑎, 𝑏) = 0. 

 
 

 If we put 𝑓𝑥(𝑎, 𝑏) = 𝑓𝑦(𝑎, 𝑏) = 0 into the formula for the tangent  plane  

            at (𝑎, 𝑏), we get the following equation: 
 

𝑧 = 𝑓(𝑎, 𝑏) 
 

This is a plane parallel to the 𝑥𝑦 plane that is analogous to the horizontal 
tangent line at a local max or min in one variable. 

 
 
Def.  A point, (𝑎, 𝑏), is called a critical point (or stationary point) of 𝑓 if 
 𝑓𝑥(𝑎, 𝑏) = 0, 𝑓𝑦(𝑎, 𝑏) = 0 or if one of the partial derivatives 

 doesn’t exist (but (𝑎, 𝑏) is in the domain of 𝑓). 
 
So our theorem says that if 𝑓 has a local max/min at (𝑎, 𝑏), then (𝑎, 𝑏) is a critical 
point. However, a critical point could be a local max/min or neither. 

 
𝑓(𝑥) = 𝑥2         𝑓(𝑥) = 𝑥3 
                                                                𝑓′(0) = 0 
𝑓′(0) = 0               𝑥 = 0 is not a local 
 

          maximum or minimum  
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So to find local max/min we will examine critical points and test them to see if 
they are local max/min or neither. 

 
 
 
Ex.  Determine the relative extrema of the elliptic paraboloid: 

𝑓(𝑥, 𝑦) = 2𝑥2 + 𝑦2 + 8𝑥 − 6𝑦 + 20. 
 
 

𝑓𝑥 = 4𝑥 + 8   ⇒   4𝑥 + 8 = 0 ⇒ 𝑥 = −2 
 

𝑓𝑦 = 2𝑦 − 6   ⇒   2𝑦 − 6 = 0 ⇒ 𝑦 = 3 

          So (−2, 3) is a critical point.  
 
 

Notice that 𝑓(𝑥, 𝑦) = 2(𝑥2 + 4𝑥 + 4) + (𝑦2 − 6𝑦 + 9) + 20 − 8 − 9 
 

       = 2(𝑥 + 2)2 + (𝑦 − 3)2 + 3 ≥ 3  
 

So 𝑓(𝑥, 𝑦) has a relative minimum at (−2, 3) with local minimum value 
of 𝑓(−2,3) = 3. 

 
 
Ex. Determine all relative extrema of the hyperbolic paraboloid: 

𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥2. 
 

𝑓𝑥 = −2𝑥  ⇒  −2𝑥 = 0   ⇒ 𝑥 = 0   
                                𝑓𝑦 = 2𝑦      ⇒     2𝑦 = 0   ⇒ 𝑦 = 0  

 
 

 Only critical point is (0, 0). 
 
 

 Notice if 𝑦 = 0 (i.e. in the 𝑥𝑧 plane), then 𝑧 = −𝑥2 has a local max at 
           𝑥 = 0. 
 
 

If 𝑥 = 0 (i.e. in the 𝑦𝑧 plane), then 𝑧 = 𝑦2 has a local min at 𝑥 = 0 
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So, no local max or min at (0, 0). 
 

(0, 0) is called a saddle point. 
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In one variable we had the 2nd derivative test: 

If 𝑓′′ is continuous near 𝑥 = 𝑎 and 𝑓′(𝑎) = 0, then: 
 

𝑓′′(𝑎) < 0  ⇒ local max 
𝑓′′(𝑎) > 0  ⇒ local min  
𝑓′′(𝑎) = 0  ⇒ can’t tell (test fails)  
 
 
 

The 2nd derivative test for 2 variables:  

 Suppose the 2nd partial derivatives of 𝑓 are continuous on a disk near 
          (𝑎, 𝑏), and suppose 𝑓𝑥(𝑎, 𝑏) = 0, 𝑓𝑦(𝑎, 𝑏) = 0, then (𝑎, 𝑏) is a critical 

             point of 𝑓. Let: 
 

𝐷 = 𝐷(𝑎, 𝑏) = 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏) − (𝑓𝑥𝑦(𝑎, 𝑏))
2

 
 

a) If 𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) > 0, then 𝑓(𝑎, 𝑏) is a local min  
b) If 𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) < 0, then 𝑓(𝑎, 𝑏) is a local max 
c) If 𝐷 < 0, then 𝑓(𝑎, 𝑏) is not a local maximum or minimum (saddle point) 
 
Note: If 𝐷 = 0 the test fails (you can’t tell). 
 

𝐷 = |
𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑥𝑦 𝑓𝑦𝑦
| = 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)

2
.  

 
Notice that if 𝑓𝑥(𝑎, 𝑏) = 0, 𝑓𝑦(𝑎, 𝑏) = 0:  

 

a.  If  𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) > 0  then 𝑓𝑦𝑦(𝑎, 𝑏) > 0, so 𝑓(𝑥, 𝑦) has a local 

minimum at (𝑎, 𝑏) in the 𝑥 direction (ie, keeping 𝑦 = 𝑏) and a local 

minimum at (𝑎, 𝑏) in the 𝑦 direction (ie, keeping 𝑥 = 𝑎). 
 
b.  If  𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) < 0  then 𝑓𝑦𝑦(𝑎, 𝑏) < 0, so 𝑓(𝑥, 𝑦) has a local 

maximum at (𝑎, 𝑏) in the 𝑥 direction (ie, keeping 𝑦 = 𝑏) and a local 

maximum at (𝑎, 𝑏) in the 𝑦 direction (ie, keeping 𝑥 = 𝑎). 
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Ex.  Find the relative extrema of 𝑓(𝑥) = −𝑥3 + 4𝑥𝑦 − 2𝑦2 + 1. 
 
 We need to find points where both 𝑓𝑥 and 𝑓𝑦 are zero. 
 

𝑓𝑥 = −3𝑥2 + 4𝑦 = 0  
𝑓𝑦 = 4𝑥 − 4𝑦 = 0 ⇒   𝑥 = 𝑦;    

  
now plug into the first equation:             −3𝑥2 + 4𝑥 = 0 
                                                              𝑥(−3𝑥 + 4) = 0 

                                 𝑥 = 0,   𝑥 =
4

3
 . 

 

 So, (0, 0) and (
4

3
,

4

3
) are the only critical points.  

 

 We need to test these points with the 2nd derivative test: 
 

                    𝑓𝑥𝑥 = −6𝑥,         𝑓𝑥𝑦 = 4,        𝑓𝑦𝑦 = −4 
 

                                    𝐷 = 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2
 

 

𝐷(0, 0) = 𝑓𝑥𝑥(0, 0)𝑓𝑦𝑦(0, 0) − (𝑓𝑥𝑦(0, 0))
2

 
 

= (0)(−4) − (4)2 = −16 
 
 

So 𝐷 < 0  ⇒ (0, 0) is a saddle point.  

 
 

𝐷 (
4

3
,

4

3
) = 𝑓𝑥𝑥 (

4

3
,

4

3
) 𝑓𝑦𝑦 (

4

3
,

4

3
) − (𝑓𝑥𝑦 (

4

3
,

4

3
))

2

  
 

                                  = (−6 (
4

3
)) (−4) − (4)2  

 

 = (−8)(−4) − 16 = 16 > 0 
 

  𝐷 > 0 and 𝑓𝑥𝑥 (
4

3
,

4

3
) = −8 < 0, so (

4

3
,

4

3
) is a local max. 
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Ex.  Find the points on the cone 𝑧2 = 𝑥2 + 𝑦2 closest to (4, 2, 0).  
 
 
 
 

𝑑 = √(𝑥 − 4)2 + (𝑦 − 2)2 + (𝑧 − 0)2 ;    

Minimize 𝑑2 because it’s easier. 
 

𝑑2 = (𝑥 − 4)2 + (𝑦 − 2)2 + (𝑧 − 0)2;       

where 𝑧2 = 𝑥2 + 𝑦2.  

 

𝑓(𝑥, 𝑦) = (𝑥 − 4)2 + (𝑦 − 2)2 + 𝑥2 + 𝑦2 
 

 

𝑓𝑥 = 2(𝑥 − 4) + 2𝑥 = 4𝑥 − 8 = 0    

⇒   𝑥 = 2 
 

𝑓𝑦 = 2(𝑦 − 2) + 2𝑦 = 4𝑦 − 4 = 0    

⇒   𝑦 = 1 

 
𝑓𝑥𝑥 = 4 
𝑓𝑥𝑦 = 0 

𝑓𝑦𝑦 = 4 

𝐷(2, 1) = 𝑓𝑥𝑥(2, 1)𝑓𝑦𝑦(2, 1) − (𝑓𝑥𝑦(2, 1))
2

  

      = 4(4) − 0 = 16 > 0 
 

𝑓𝑥𝑥(2, 1) = 4 > 0   ⇒    (2, 1) is local minimum.  
 
 

Intuitively it’s a global minimum because there has to be a closest point. 
 

𝑧2 = 𝑥2 + 𝑦2 = 22 + 12 = 5 
 

                                    𝑧 = ±√5 
 

Closest points:      (2, 1, √5),     (2, 1, −√5). 

(𝑥, 𝑦, 𝑧) 

(4,2,0) 

𝑑 
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Here are a couple of examples where the 2nd derivative test fails: 
 

Ex. Let    𝑓(𝑥, 𝑦) = 𝑥4 + 𝑦4 
 

𝑓𝑥 = 4𝑥3 = 0  ⇒ 𝑥 = 0                   
 

𝑓𝑦 = 4𝑦3 = 0  ⇒ 𝑦 = 0 

critical point: (0, 0) 
 
 

𝑓𝑥𝑥 = 12𝑥2 
𝑓𝑥𝑦 = 0 

𝑓𝑦𝑦 = 12𝑦2 
 

At (0, 0):  𝐷 = 𝑓𝑥𝑥(0, 0)𝑓𝑦𝑦(0, 0) − 02 = 0 

 
So the 2nd derivative test fails but (0, 0) is a local (and global) minimum since 
𝑓(0, 0) = 0 but 𝑓(𝑥, 𝑦) > 0 for any point (𝑥, 𝑦) ≠ (0,0).    
         
Ex.   Let  𝑓(𝑥, 𝑦) = 𝑥3 
 

𝑓𝑥 = 3𝑥2                  
 

𝑓𝑦 = 0  
 

    (0, 𝑦) are all critical points. 

 
 

𝑓𝑥𝑥 = 6𝑥 
𝑓𝑥𝑦 = 0       

𝑓𝑦𝑦 = 0 
 
 
 
 
 
 
 
 

⇒       𝐷(0, 𝑦) = 𝑓𝑥𝑥(0, 𝑦)𝑓𝑦𝑦(0, 𝑦) − (𝑓𝑥𝑦(0, 𝑦))
2

= 0 

So the 2nd derivative test fails, but (0, 𝑦) is not a max, min, or saddle. 

𝑧 = 𝑥4 + 𝑦4 

𝑧 

𝑦 

𝑥 
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Ex.  A rectangular box is to be made from 54𝑚2 of cardboard. Find the      
       maximum volume of the box. 
 
                                                                                        
 

     𝑆𝐴 = 2𝑥𝑦 + 2𝑦𝑧 + 2𝑥𝑧 = 54 ;   
        𝑉 = 𝑥𝑦𝑧 
 

 

   𝑥𝑦 + 𝑦𝑧 + 𝑥𝑧 = 27, now solve for 𝑧: 
 

  𝑧(𝑥 + 𝑦) = 27 − 𝑥𝑦  ⇒     𝑧 =
27−𝑥𝑦

𝑥+𝑦
  

 

     𝑉(𝑥, 𝑦) = 𝑥𝑦 (
27−𝑥𝑦

𝑥+𝑦
) =

27𝑥𝑦−𝑥2𝑦2

𝑥+𝑦
  

 
 

    𝑉𝑥 =
(𝑥+𝑦)(27𝑦−2𝑥𝑦2)−(27𝑥𝑦−𝑥2𝑦2)

(𝑥+𝑦)2   

         =
27𝑥𝑦−2𝑥2𝑦2+27𝑦2−2𝑥𝑦3−27𝑥𝑦+𝑥2𝑦2

(𝑥+𝑦)2   

 

          =
−𝑥2𝑦2+27𝑦2−2𝑥𝑦3

(𝑥+𝑦)2 =
𝑦2[−𝑥2−2𝑥𝑦+27]

(𝑥+𝑦)2   

 
 

  𝑉𝑦 =
𝑥2[−𝑦2−2𝑥𝑦+27]

(𝑥+𝑦)2    

 

 

𝑉𝑥 = 0  ⇒   𝑦 = 0    or    −𝑥2 − 2𝑥𝑦 + 27 = 0 
 

𝑉𝑦 = 0  ⇒   𝑥 = 0    or    −𝑦2 − 2𝑥𝑦 + 27 = 0. 
 
 

So (0, 0) is a critical point.  
  

𝑉(0,0) = 0. 
 

 

𝑥 

𝑦 

𝑧 
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To find the other critical point,  solve simultaneously:  
 

                        −𝑥2 − 2𝑥𝑦 + 27 = 0 
                        −𝑦2 − 2𝑥𝑦 + 27 = 0 

              −𝑥2 + 𝑦2              = 0    ⇒    𝑥 = ±𝑦,  but 𝑥, 𝑦, 𝑧 ≥ 0 
 

 

               𝑥 = 𝑦 ≥ 0   ⇒    −𝑥2 − 2𝑥2 + 27 = 0   or     𝑥2 = 9.   

                                            

               ⇒         𝑥 = 3 since 𝑥 ≥ 0,  so  𝑥 = 3 = 𝑦,  

                  

                             and   (3, 3) is a critical point. 
 

          𝑉(3,3) = (3)(3) (
27−9

3+3
) = 27.   

 

We could use the 2nd derivative test (which is messy) or argue that this 

problem must have an absolute maximum, which has to occur at a critical 

point.  𝑉 = (3)(3)(3) = 27𝑚3 is the absolute max. 

 

 

 

Absolute Maxima/Minima: 

For a continuous function of 1 variable on a closed (and bounded) interval, 

we have the extreme value theorem: the function has an absolute max and 

min value in the closed interval. We know that the absolute maximum and 

minimum can be calculated by: 

 

1. Finding the value of the function at all critical points 

2. Finding the value of the function at the end points 

 

The largest of these values is the absolute maximum and the smallest is the 

absolute minimum. 
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For a continuous function of 2 variables on a closed and bounded set in ℝ2 

(it contains all of its boundary points) we have: 

 

Extreme Value Theorem:  If 𝑓 is continuous on a closed, bounded set, 𝐷, in ℝ2, 

then 𝑓 attains an absolute maximum and minimum value at some point 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) in 𝐷. 

  

 To find the extreme values we have to: 

1. Find the value of 𝑓 at the critical points in 𝐷 

2. Find the extreme values of 𝑓 on the boundary of 𝐷 

3. The largest of the values in steps 1 and 2 is the absolute maximum and 

the smallest is the absolute minimum 

 

 

Ex.  Find the absolute maximum and minimum of the function, 

 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑥 − 𝑦 + 1, in the disk, 𝐷, defined by   

𝑥2 + 𝑦2 ≤ 1. 

 

 

 

  First find the critical points of 𝑓(𝑥, 𝑦) in 𝐷: 

𝑓𝑥 = 2𝑥 − 1   ⇒   2𝑥 − 1 = 0    

                        ⇒              𝑥 =
1

2
   

 

 

𝑓𝑦 = 2𝑦 − 1   ⇒   2𝑦 − 1 = 0   

                           ⇒             𝑦 =
1

2
   

 

So (
1

2
,

1

2
) is the only critical point  

of 𝑓(𝑥, 𝑦) in 𝐷.  

 

𝑧 = 𝑥2 + 𝑦2 − 𝑥 − 𝑦 + 1 

𝐷 
𝑥2 + 𝑦2 = 1 

𝑓(𝑐(𝑡)) = 𝑓(𝜕𝐷) 
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𝑓 (
1

2
,

1

2
) = (

1

2
)

2
+ (

1

2
)

2
−

1

2
−

1

2
+ 1 =

1

2
 .  

 
 

We can parametrize the boundary of 𝐷, 𝑥2 + 𝑦2 = 1 by:  

 

𝑐(𝑡) = (sin 𝑡 , cos 𝑡) ;  0 ≤ 𝑡 ≤ 2𝜋. 
 

𝑓(𝑐(𝑡)) = sin2 𝑡 + cos2 𝑡 − sin 𝑡 − cos 𝑡 + 1 = 2 − sin 𝑡 − cos 𝑡. 
 

 

Let 𝑔(𝑡) = 𝑓(𝑐(𝑡)) = 2 − sin 𝑡 − cos 𝑡 ;        0 ≤ 𝑡 ≤ 2𝜋. 

 

Now find the max/min of 𝑔(𝑡) by testing critical points and the endpoints:   

𝑔′(𝑡) = 0  ⇒  − cos 𝑡 + sin 𝑡 = 0  or  sin 𝑡 = cos 𝑡. 
 

This occurs when 𝑡 =
𝜋

4
,

5𝜋

4
. 

 

𝑓 (𝑐 (
𝜋

4
)) = 𝑓 (

√2

2
,

√2

2
) = 2 − √2  

𝑓 (𝑐 (
5𝜋

4
)) = 𝑓 (−

√2

2
, −

√2

2
) = 2 + √2.   

 

Now find the values of 𝑓 at the endpoints, i.e. when 𝑡 = 0, 2𝜋. 

𝑓(𝑐(0)) = 𝑓(0, 1) = 1  

𝑓(𝑐(2𝜋)) = 𝑓(0, 1) = 1.  
 

Now compare these values to the value of 𝑓 at the critical point inside 𝐷. 

𝑓 (
1

2
,

1

2
) =

1

2
  

 

So, absolute max at (
−√2

2
,

−√2

2
) and absolute min at (

1

2
,

1

2
), thus, 

maximum value is 2 + √2 and the minimum value is 
1

2
 . 
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Ex.  Find the absolute maximum and minimum value of 

       𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 on  𝑥2 + 𝑦2 ≤ 1. 

 

On the disk, 𝐷,  𝑥2 + 𝑦2 ≤ 1:  

 

𝑓𝑥 = 3𝑥2 = 0 ⟹   𝑥 = 0;         𝑓𝑦 = 3𝑦2 = 0 ⟹   𝑦 = 0   

 

So (0,0) is the only critical point in 𝐷. 

 

𝑓(0,0) = 0. 

 

We can parametrize the boundary of 𝐷, 𝑥2 + 𝑦2 = 1 by: 

𝑐(𝑡) = (cos 𝑡 , sin 𝑡) ;  0 ≤ 𝑡 ≤ 2𝜋. 

 

𝑔(𝑡) = 𝑓(𝑐(𝑡)) = cos3(𝑡) + sin3(𝑡).  

 

Now find the absolute maximum and minimum of 𝑔(𝑡) on 0 ≤ 𝑡 ≤ 2𝜋. 
 

 

𝑔′(𝑡) = 3 cos2 𝑡(−𝑠𝑖𝑛𝑡) + 3 sin2 𝑡(𝑐𝑜𝑠𝑡)  

           = 3𝑐𝑜𝑠𝑡(𝑠𝑖𝑛𝑡)(−𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛𝑡) = 0.  

 

𝑔′(𝑡) = 0  when 𝑐𝑜𝑠𝑡 = 0,    𝑠𝑖𝑛𝑡 = 0,   or   𝑐𝑜𝑠𝑡 = 𝑠𝑖𝑛𝑡. 

 

𝑐𝑜𝑠𝑡 = 0 ⟹ 𝑡 =
𝜋

2
,

3𝜋

2
  

𝑠𝑖𝑛𝑡 = 0 ⟹ 𝑡 = 0, 𝜋, 2𝜋  

𝑐𝑜𝑠𝑡 = 𝑠𝑖𝑛𝑡 ⟹ 𝑡 =
𝜋

4
,

5𝜋

4
 .  
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Now compare the value of 𝑓(𝑐(𝑡)) at all of these points and 𝑓(0,0) = 0. 

 

𝑓 (𝑐 (
𝜋

2
)) = 𝑓(0,1) = 1               

𝑓 (𝑐 (
3𝜋

2
)) = 𝑓(0, −1) = −1  

 

𝑓(𝑐(0)) = 𝑓(1,0) = 1                      

𝑓(𝑐(𝜋)) = 𝑓(−1,0) = −1  

𝑓(𝑐(2𝜋)) = 𝑓(1,0) = 1       

          

𝑓 (𝑐 (
𝜋

4
)) = 𝑓 (

√2

2
,

√2

2
) =

√2

2
  

𝑓 (𝑐 (
5𝜋

4
)) = 𝑓 (−

√2

2
, −

√2

2
) = −

√2

2
  . 

 

          Absolute max at (1,0), (0,1), and max value= 1. Absolute min at  

            (−1,0), (0, −1), and min value = −1. 


