Taylor Series in 2 Variables

Recall from first year calculus that if f(x) has an infinite number of derivatives near a point x=a, then we have:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^n(a)}{n!}(x - a)^n + R_n(x, a)$$

where
$$R_n(x,a) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$
 and c is between x and a .

This allows us to approximate the value of a function, f(x), using an n-th degree polynomial if we know the value of the function and its derivatives at x=a. In addition, $R_n(x,a)=$ error in the approximation, allows us to put an upper bound on the error of this approximation.

where:

$$T_1(x) = f(a) + f'(a)(x - a)$$

$$T_2(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2.$$

Ex. Approximate the value of $e^{.02}$ using a second order Taylor polynomial around a=0.

$$f(x) = e^{x}$$
 $f(0) = 1$
 $f'(x) = e^{x}$ $f'(0) = 1$
 $f''(x) = e^{x}$ $f''(0) = 1$
 $f'''(x) = e^{x}$ $f'''(0) = 1$

$$e^x = f(0) + f'(0)(x) + \frac{f''(0)}{2!}(x^2) + R_2(x, 0)$$

where
$$R_2(x,0) = \frac{f'''(c)}{3!}(x-0)^3 = \frac{e^c}{3!}x^3$$
 and $0 < c < x$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{e^c}{3!}x^3$$

So now we can plug in x = .02

$$e^{.02} \approx 1 + .02 + \frac{(.02)^2}{2!} = 1 + .02 + \frac{.0004}{2} = 1.0202$$

The error is no bigger than:

$$|R_2(.02,0)| = \frac{e^c}{3!}(.02)^3 \le \frac{3}{3!}(.000008) = .000004.$$

Now we want to be able to approximate the value of f(x, y) using polynomials in x and y.

Second Order Taylor Formula:

Let $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ have continuous partial derivatives of third order and let $(x_0,y_0)\in U.$ Then we have:

$$f(x,y) = f(x_0, y_0) + (f_x(x_0, y_0))(x - x_0) + (f_y(x_0, y_0))(y - y_0)$$

$$+ \frac{1}{2} [f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2] + R_2(x, y, x_0, y_0)$$

where:

$$R_{2}(x, y, x_{0}, y_{0}) = \frac{1}{3} \sum_{i,j,k=1}^{2} \left(\frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}(c_{ijk})\right) (\Delta x_{i}) (\Delta x_{j}) (\Delta x_{k})$$

$$x_{1} = x$$

$$x_{2} = y$$

$$\Delta x_{i} = x - x_{0} \text{ if } i = 1$$

$$= y - y_{0} \text{ if } i = 2$$

and c_{ijk} lies somewhere on the line segment between (x, y) and (x_0, y_0) .

Ex. Compute the second order Taylor formula for $f(x,y) = e^x \cos y$ about the point $(x_0, y_0) = (0,0)$ and approximate the value of $e^{.02} \cos(.04)$.

$$f(x,y) = e^{x} \cos y \qquad f(0,0) = 1$$

$$f_{x} = e^{x} \cos y \qquad f_{x}(0,0) = 1$$

$$f_{y} = -e^{x} \sin y \qquad f_{y}(0,0) = 0$$

$$f_{xx} = e^{x} \cos y \qquad f_{xx}(0,0) = 1$$

$$f_{xy} = -e^{x} \sin y \qquad f_{xy}(0,0) = 0$$

$$f_{yy} = -e^{x} \cos y \qquad f_{yy}(0,0) = -1$$

$$e^{x} \cos y = 1 + 1(x - 0) + 0(y - 0)$$

$$+ \frac{1}{2} [1(x - 0)^{2} + 2(0)(x - 0)(y - 0) - 1(y - 0)^{2}] + R_{2}(x, y, 0, 0)$$

$$= 1 + x + \frac{1}{2}x^{2} - \frac{1}{2}y^{2} + R_{2}(x, y, 0, 0).$$

Thus we have:

$$e^x \cos y \approx 1 + x + \frac{1}{2}x^2 - \frac{1}{2}y^2$$

$$e^{.02}\cos(.04) \approx 1 + .02 + \frac{1}{2}(.02)^2 - \frac{1}{2}(.04)^2$$

= 1 + .02 + .0002 - .0008 = 1.0194.

Ex. Determine the second order Taylor formula for $f(x,y) = x \cos y$ about the point $(1,\frac{\pi}{4})$ and approximate:

$$f\left(1.1, \frac{\pi}{4} + .2\right) = (1.1)\cos(\frac{\pi}{4} + .2).$$

$$f(x,y) = x \cos y$$

$$f\left(1, \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$f_x = \cos y$$

$$f_x\left(1, \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$f_y = -x \sin y$$

$$f_y\left(1, \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$f_{xx} = 0$$

$$f_{xx}\left(1, \frac{\pi}{4}\right) = 0$$

$$f_{xy}\left(1, \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$f_{yy} = -x \cos y$$

$$f_{yy}\left(1, \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$f(x,y) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x-1) - \frac{\sqrt{2}}{2}\left(y - \frac{\pi}{4}\right)$$

$$+ \frac{1}{2}\left[0(x-1)^2 + 2\left(-\frac{\sqrt{2}}{2}\right)(x-1)\left(y - \frac{\pi}{4}\right) + \left(-\frac{\sqrt{2}}{2}\right)\left(y - \frac{\pi}{4}\right)^2\right]$$

$$+ R_2(x,y,1,\frac{\pi}{4})$$

$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x-1) - \frac{\sqrt{2}}{2}\left(y - \frac{\pi}{4}\right)$$

$$+ \frac{1}{2}\left[-\sqrt{2}(x-1)\left(y - \frac{\pi}{4}\right) + \left(-\frac{\sqrt{2}}{2}\right)\left(y - \frac{\pi}{4}\right)^2\right] + R_2(x,y,1,\frac{\pi}{4}).$$

$$(1.1)\cos\left(\frac{\pi}{4} + .2\right)$$

$$\approx \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(.1) - \frac{\sqrt{2}}{2}(.2) + \frac{1}{2}\left[-\sqrt{2}(.1)(.2) + \left(-\frac{\sqrt{2}}{2}\right)(.2)^2\right]$$

$$= (.9)\frac{\sqrt{2}}{2} - (.04)\left(\frac{\sqrt{2}}{2}\right) \approx .6081.$$