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Higher Order Partial Derivatives 
 
 
As with functions of 1 variable, we can take 2nd partial derivatives (and higher 
order derivatives) of a function 𝑧 = 𝑓(𝑥, 𝑦): the partial derivative of a partial 
derivative. 

 

(𝑓𝑥)𝑥 = 𝑓𝑥𝑥 = 𝑓11 =
𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑥2 =
𝜕2𝑧

𝜕𝑥2  

 

   (𝑓𝑥)𝑦 = 𝑓𝑥𝑦 = 𝑓12 =
𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕2𝑧

𝜕𝑦𝜕𝑥
  

 

   (𝑓𝑦)
𝑥

= 𝑓𝑦𝑥 = 𝑓21 =
𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑧

𝜕𝑥𝜕𝑦
   

 

(𝑓𝑦)
𝑦

= 𝑓𝑦𝑦 = 𝑓22 =
𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2 =
𝜕2𝑧

𝜕𝑦2  

 
 

Ex.  Find the 2nd partial derivatives of 𝑓(𝑥, 𝑦) = 𝑒𝑥 − 3𝑥𝑦2 − sin 𝑦. 
 

𝑓𝑥 = 𝑒𝑥 − 3𝑦2                     𝑓𝑦 = −6𝑥𝑦 − cos 𝑦 

 
                      𝑓𝑥𝑥 = 𝑒𝑥                                𝑓𝑦𝑥 = −6𝑦  

 
                      𝑓𝑥𝑦 = −6𝑦                           𝑓𝑦𝑦 = sin 𝑦 

 
 

 Notice 𝑓𝑥𝑦 = 𝑓𝑦𝑥;  this happens often. 

 
Theorem:  Suppose 𝑓 is defined on a disk, 𝐷, that contains the point (𝑎, 𝑏). If 𝑓𝑥𝑦 

and 𝑓𝑦𝑥 are both continuous on 𝐷, then: 
 

𝑓𝑥𝑦(𝑎, 𝑏) = 𝑓𝑦𝑥(𝑎, 𝑏). 
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Ex.  Calculate 𝑓𝑥𝑦𝑥𝑧 if 𝑓(𝑥, 𝑦, 𝑧) = 𝑒(𝑥+𝑦𝑧). 
 

                          𝑓𝑥 = 𝑒𝑥+𝑦𝑧 𝜕

𝜕𝑥
(𝑥 + 𝑦𝑧) = 𝑒𝑥+𝑦𝑧  

 

                      𝑓𝑥𝑦 = 𝑒𝑥+𝑦𝑧 𝜕

𝜕𝑦
(𝑥 + 𝑦𝑧) = 𝑒𝑥+𝑦𝑧𝑧  

 

                     𝑓𝑥𝑦𝑥 = 𝑧𝑒𝑥+𝑦𝑧 𝜕

𝜕𝑥
(𝑥 + 𝑦𝑧) = 𝑧𝑒𝑥+𝑦𝑧  

 
            𝑓𝑥𝑦𝑥𝑧 = 𝑧(𝑒𝑥+𝑦𝑧)(𝑦) + 𝑒𝑥+𝑦𝑧 = (𝑧𝑦 + 1)𝑒𝑥+𝑦𝑧 . 

 
 
 
Just as we have differential equations that we need to solve that describe 
processes in the world, for example: 

                   if  𝑓′(𝑡) = 𝑘𝑓(𝑡);  𝑡ℎ𝑒𝑛 𝑓(𝑡) = 𝑐𝑒𝑘𝑡,  
there are partial differential equations that describe processes in the world.  
 
One example is Laplace’s equation: 

 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0.  

 
 

Solutions of this equation are called harmonic functions, which can be used to 
describe heat conduction, fluid flow, and electric potential. 
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Ex.  Show 𝑢(𝑥, 𝑦) = ln √𝑥2 + 𝑦2 satisfies Laplace’s equation.  

 
 

𝑢(𝑥, 𝑦) =
1

2
ln(𝑥2 + 𝑦2)  
 

                𝑢𝑥 =
1

2
(

2𝑥

𝑥2+𝑦2)                              𝑢𝑦 =
1

2
(

2𝑦

𝑥2+𝑦2)  
 

                 𝑢𝑥 =
𝑥

𝑥2+𝑦2                                      𝑢𝑦 =
𝑦

𝑥2+𝑦2  
 

                𝑢𝑥𝑥 =
(𝑥2+𝑦2)(1)−𝑥(2𝑥)

(𝑥2+𝑦2)2                  𝑢𝑦𝑦 =
(𝑥2+𝑦2)(1)−𝑦(2𝑦)

(𝑥2+𝑦2)2   
 

                𝑢𝑥𝑥 =
−𝑥2+𝑦2

(𝑥2+𝑦2)2                                 𝑢𝑦𝑦 =
𝑥2−𝑦2

(𝑥2+𝑦2)2  
 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 =
−𝑥2+𝑦2

(𝑥2+𝑦2)2 +
𝑥2−𝑦2

(𝑥2+𝑦2)2 = 0.   

 

Ex.  The wave equation is given by 
𝜕2𝑢

𝜕𝑡2 = 𝑎2 𝜕2𝑢

𝜕𝑥2 where 𝑎 is a constant. Suppose 

𝑓 and 𝑔 are twice differentiable functions of a single variable. Show that:               
𝑢 = 𝑓(𝑣) + 𝑔(𝑤) where 𝑣 = 𝑥 + 𝑎𝑡 and 𝑤 = 𝑥 − 𝑎𝑡 is a solution to the wave 
equation. 

                          
𝜕𝑢

𝜕𝑡
=

𝜕𝑓

𝜕𝑣
 
𝜕𝑣

𝜕𝑡
+

𝜕𝑔

𝜕𝑤
 
𝜕𝑤

𝜕𝑡
= 𝑎

𝜕𝑓

𝜕𝑣
− 𝑎

𝜕𝑔

𝜕𝑤
  

 

                          
𝜕2𝑢

𝜕𝑡2 = 𝑎 (
𝜕2𝑓

𝜕𝑣2  
𝜕𝑣

𝜕𝑡
) − 𝑎 (

𝜕2𝑔

𝜕𝑤2  
𝜕𝑤

𝜕𝑡
)   

 

                          
𝜕2𝑢

𝜕𝑡2 = 𝑎2 𝜕2𝑓

𝜕𝑣2 + 𝑎2 𝜕2𝑔

𝜕𝑤2 = 𝑎2 (
𝜕2𝑓

𝜕𝑣2 +
𝜕2𝑔

𝜕𝑤2).   

 

                             
𝜕𝑢

𝜕𝑥
=

𝜕𝑓

𝜕𝑣
 
𝜕𝑣

𝜕𝑥
+

𝜕𝑔

𝜕𝑤
 
𝜕𝑤

𝜕𝑥
=

𝜕𝑓

𝜕𝑣
+

𝜕𝑔

𝜕𝑤
   

 

                            
𝜕2𝑢

𝜕𝑥2 =
𝜕2𝑓

𝜕𝑣2  
𝜕𝑣

𝜕𝑥
+

𝜕2𝑔

𝜕𝑤2  
𝜕𝑤

𝜕𝑥
=

𝜕2𝑓

𝜕𝑣2 +
𝜕2𝑔

𝜕𝑤2   

 

So we have:                    
𝜕2𝑢

𝜕𝑡2 = 𝑎2 𝜕2𝑢

𝜕𝑥2 . 


