Taylor Series and Maclaurin Series

Taylor series and Maclaurin series are power series representations of functions
(Maclaurin series is a special case of Taylor series where the power series

representation is around a = 0).
Suppose f (x) has a power series representation around X = a:
fX)=cotx—a)+c(x—a)> +cs(x—a)®+ -+ c,(x —a)* + -
for |[x —al|<R; R > 0.

Notice that at x = a we get:
fl@=cp+ci(a—a)+c(a—a)* +cz(a—a)+ - +cp(a—a)* + -
f(a) = co.

Now let’s calculate the derivatives of f(x) at x = a:

f'(x) =c; + 2c,(x —a) + 3c3(x — a)® + -+ ne, (x — a)n—l T ..

f'(a) =c; +2c,(a—a) + 3cz3(a—a)> + - +nc,(a—a)*t + -
f'(a) =c4q].

f'"(x) =2c, +32c3(x —a) +4-3c,(x —a)? +
et n(n—1c,(x—a)* 2%+ -

'@ _

f"(a) = 2c,, which means that 5 2].




f"(x) =3-2c3+4-3-2c,(x—a)+5-4-3c,(x —a)* +
+n(n— 1D —2)cp(x —a)" 3 + -

f'"(a) = 3 - 2c3, which means that ! 3(!a) = C3
By the same reasoning:
n
f™(a) = n!c,, which means that % =cC,

Theorem: If f has a power series expansion around x = a,

fx) = Xn=ocn(x —a)"; for[x —al <R;
(@)
n!

then ¢, = so we know

0O = S ED (x - @
=f@+f@a -+ L2 -2 + L2y + -
+L0 (a4

This is called the Taylor series of the function f around x = a.

For the special case when a = 0, the Taylor series becomes:
o f (0)
f(x) - n

_f(()) _|_f (0)(.76) _|_f”(0)( )2 f”’( )(x)S + . +f 0 )(.X')n-l-

This is called the Maclaurin series of the function f



Ex. Find the Maclaurin series for f (x) = e* (You need to know this series).

To find a Maclaurin series, we need to find f and all of its derivatives at x = 0
(for a general Taylor series around X = a we would need to find f and its
derivatives at X = a and plug into the Taylor series formula).

fx) =e* f(0)=e’=1
f'x) = e* fl0)=e’=1
f'(x) = e* fr0)=e’=1
f"'(x) = e* f'(0) = e® =

freo) = e Fr(0) = e =

Now we plug into the Maclaurin series formula:
: £ (o
F) =fO) +F O +E2 02+ + E o +

x2  x3 Xt x™ o X"
=1+X+a+§+z+“'+a+"'= n=0m=6x.

Let’s find the radius of convergence of the Maclaurin series for e*:

+
R—11m|xn

n-oo ' (n+1)! xn

| = 0 ; for all values of x.

n—>oo|

xn
Thus, R = o0 and Zn 0 7,; converges for all values of x.

Soif f(x) = e”* has a power series expansion about x = 0,

hene® = 7 aa
thene™ = n=0



A Taylor Series (or Maclaurin Series) is a generalization of the linear
approximation:

f y = T (x)
V=T,
T,(x) = f(@) + f'(@)(x — a)
1,00 = f(@) + f' (@ — a) + 52 (x — a2
Ty = £(@) + £ (@ - @) + LD x a2 + L@ (- oy’

TG = f@) + @& - ) + L@ (x — )2 + 52 (2 - )

+ot LD gy

n!

In general, f (x) is equal to its Taylor Series if:
f(x) = lim T, (x).
n—->0o

The polynomials, Ty, T, T, ..., T}, are called Taylor Polynomials.



Ex. Find the Taylor Polynomials Ty, T5, T3, and T,, for f (x) = e* around x = 0.
since f1(0) = 1, fori = 0,1,2, ... we have:

Ti(x) = f(0) + f'(0)(x) = 1 +x
To(x) = £(0) + f(0)(x) +%(9€)2 =1+x +xz—2

T3(0) = £(0) + /(0 + L2 ()2 + L2 ()2

xz x3
1+X+§+§

Tu(0) = £(0) + £/ (0)() + L2 ()7 4o 4 L gy

TL

=1+x+5; + SR

Let R, (x) = f(x) — T, (x). R, (x)is called the Remainder of the Taylor series. If
we can show that lim R, (x) = 0, then we have:

f(x) = lim T, (x)

and the Taylor Series converges to the function.



Theorem: If f(x) has n + 1 derivatives in an interval I that contains X = a,
then for X in I there is a number Z between X and “a” such that:

n+1( )

Ra(@) =B -yt

1. Notice that the RHS is close to the (n + 1)St order term of the Taylor series
fn+1(a) (x _ )TL+1
(n+1)! |

n+1
2. R,(x)= = +1()') (x — a)™*1 s called the Lagrange form of the remainder.

Ex.  Show that for the function f(x) = e*, lim R,,(x) = 0 for all real
n—oo

values of x, where R, (x) is the remainder of the Taylor polynomials
around x = 0.

Since we are using Taylor Polynomials around x = 0, the Lagrange form of the

fn+1(Z)
remainder is: R,(x) = D) (x)"+1,

We need to show that lim R, (x) = O for all real values of x.
n—->00
Case 1: x > 0; Since f(x) = e*, F™(x) = e*.
Thus, f™(z) = eZ, where 0 < z < x.

So we have:

0<R,(x)= ot < &

(x)n+1

(n +1)' (n +1)'



Notice for any fixed number X,

n

X
lim — = 0; so we can say:
n—oo n!
exx"
lim = 0 ; thus by the squeeze theorem

n—oo n!

lim R,(x) = 0.
n—oo

Case2: x < 0;sonow x < z < 0, which means that e? < e? = 1.

So we have:

0<

(x)n+1| < |(i++11)!

(n +1)'

n

X
Once again we know lim — = 0, so by the squeeze theorem

n—oo n!

lim R,(x) = 0.

n—-oo

Thus, f(x) = e* = Y- 0 for all real values of x.

In particular, for x = 1 we get the following amazing series:

1 (n"

el=e=Yn o =l bbbt

+ .-



Ex.  Find the Maclaurin series for f(x) = cos(x) and show that it equals coS x
for all x.

To find a Maclaurin (or Taylor) series we have to find an expression for the
th derivativeatx = 0 (or x = a for a general Taylor series).

In this case, there is a pattern in the derivatives of COS X, as well as sin x.

f() = cos (@) f0) =1
f'(0) = =sin (@) (=0
f"(x) = —cos (x) () = -
£ (x) = sin (x) f(©0) =0
f4(0) = cos(x) IHOES

So the odd derivatives at x = 0 are equal to 0 and the even derivatives,

i.e. the (Zn)th derivative is equal to (—1)".

Now let’s plug into the Maclaurin series formula:

F@) = £(0) + £/ @) + 2 )2 + L2 ()7

f10) , \n
+ .- +T(X) +

xZTL

(2n)!

1——+7——+ (D)

_ ( 1)11. 2n
- Zn 0 (2n)!



Now let’s show that this series converges to cOS X for all real numbers.

To do this, we must show that lim R,,(x) = O for all real numbers x.

n—>0o

Since we are using a Maclaurin series, i.e. “a”= 0, the remainder has the form:

n+1 (Z)

Rn(x) = ( mER ——— (x)™*! ; where z is between 0 and .

Notice that every derivative of f (x) = cos(x) is either + cos(x) or + sin(x).

In every case, we have |f*(2)| <

Thus we have:

< <
0 <|R,(x)| = n+1)! Tt &) = [+’
Tl.
Since lim — = 0, by the squeeze theorem we have llm R,,(x) = 0 for all real
n—>00
values of x.

Thus, we have shown that the Maclaurin series converges to the function and:

2n

cos(x)—l——+———-|- (- 1)71 + ..

(2n)!

You must know this series as well as the one for sin x!!
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Ex. Find the Maclaurin series for f(x) = sin(x).

We could find this series the same way we did for cos(x), but it’s easier to just
differentiate the series for cos (x) and multiply by —1.

. 1 4 X6 1 n XZ
f(x) = cos(x) = __+_'_E+ -+ (-1) 2 )'
( 1)11 2n
ZTL 0 (2n)!
_ _ x> x> n x2n—1 y
f'(x) = —sin(x) = —x + + + -+ (—1) oD + -
) 5 1 Zn 1
Sln(.'X,') = x——‘l‘_'_?‘l' -+ ( 1)(n )(Zn D!
_|_( 1)(”) xent + ...
(2n+1)!

(_1)nx2n+1

= Xn=o (2n+1)!

We can use the Maclaurin (or Taylor) series of known functions like e*, sin x, or cos x
to find series for related functions.
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2

Ex. Find the Maclaurin series for f(x) = e 1 and g(x) = e ™",
2 3 4 n
Pl x+ T+
2! 3! 4! n!
2 3 4 n
x—1=x+x_+x_+x_+...+x__|_...
2! 3! 4! n!
o¥_1 x %2 3 n-1 o xn1
—=1+_+5++ -+ to = Ynm1

2 . . .
Now to find g(x) = e™*", just substitute —x? into the series for e*.

2 3 4

n
=1+x+>+= 4+ =+
2! 3! 4! n!
(_xZ)‘n

_A2)\2 _~+23\3 _ A2 \4
2! 3! 4! n!
4- x6 8 ( 1)71 2n (_1)nx2n
=1—x? o b e = R

Ex. Find the Taylor series for f(x) = e™* and show e’* = cos x + isinx,

known as Euler’s Formula.

2 ; 3 . 4 y n
(Lx) (), G0% o @

e =14 (ix) + — -+ o o
P2 .2 :3..3 4.4 (P ()
=1+ix+— +‘x F e
21 3! 4!

3 .'X.'5 .'X.'7

4- 6
=1-T4 D D pi(x- i)
4! 5! 7!

=cosx +isinx.

Notice that at X = 1T we get:
e™ = cosm + isint = -1 = e™+1=0
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sin(x)—x
Ex. Find the Maclaurin series for f(x) = (x—3) :
3 5 n2n+1
. X X (-D™x
simx =xXx——+—_—+ -+
3! 5! (2n+1)!
3 5 n,2n+1
: X X (-D)"™x
simx —x=——+—+"+
3l 5 (2n+1)!
x3 x5 | (_1)nx2n+1
sinx-x _ "3 st G
x3 x3
. 1 + x2 x4- (_1)nx2n—2
31 51 71T (2n+1)!

. (_1)nx2n—2

n=1"(2p+1)!




13

Ex. Find the Taylor series for f(x) = sin(x) around a = .

FG) = sin(x) f(m) =0
f() = cos(x) fim = —1
f'() = —sin() f(m =0
£ (x) = —cos(x) £ =1
£400) = sin(x) fHm =0

F@) = f@) + f' @ —m) + 22 (x - n)?

_|_..._|_fn(|")(x_7-[)n_|_...

Since £ 2% (1) = 0 we have:
= —(x—m+5 -1 -2 —m)S

(_1)n+1

Tt 2n+1)!

(X _ 7.L-)2n+1 + ...
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Ex.  Find the Maclaurin series for f(x) = (1 + x)¥, where k is a real number.

flx) =1 +x)"
f'(x) = k(1 +x)k1
() = k(e = (1 + x)k2

fFO@) =k(k—1) (k—n+1)1+x)k™

f(0) =1
f10) =k
f70) = k(k —1)

ff0)=kk—1)--(k—n+1)

F@) = £O) + f1(Ox + 2 0x2 4. L yn

k(k-1)..(k—n+1) x4 e
n!

A+x)k=1+kx+5ED52 4y
2!



x2

Ex. Find the Maclaurin series for .
Va+x

1 . _1 . _1 x\ 2 _1 X 2
\/4+x_(4+x)2_42(1+2) _2(1+4)
notice this is similar to (1 + x)* , k = —%.

n ((—1) (1.3.5...(2n—1))) xM+2 4 .

n!gn

15
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1 _y2 . : : : 1 _y2 L
Ex. Evaluate fo e~ * dx using a Maclaurin series. Approximate fo e * dx to within

0.001.

o 1 , N
—X —_ _ - -
foe dx—f()(l x+2! 3!+4!+ )dx

; 1

3 52D 7@ 9(4!)+'"|O

1 1 1 1 1
=1-3+ 5(21) 73D ' 9(al)  11(s)) L

This is an alternating series so the error after n terms is less than the absolute
value of the (1 + 1)5¢ term.

1
11(5!) 1320

Notice that < 0.001 so:

1 1
520 7(3D * 9(4))

1
1
j e dx~1——+ ~ 0.7475
. 3

with an error of less than 0.001 .



Ex.

_ _ 4. cos(x3)-1+(5)x®
Use Maclaurin series to find lim

x—0 x12

2 4 6

X X X
cosx=1-—+——=—+--.

21 41 ¢l

cos(x?) = 1 — (x;)z N (x;)“ B (x;f

1 le x18
cos(x®) — 1+ - x° Tt
lim = = lim ——
x—0 X x—0 X

17



Power series can be added, subtracted, multiplied and divided much like polynomials.

Ex. Find the first 3 non-zero terms in the Maclaurin series for:
a. (eM)[In(1—x)]

x
sin (x)

3

2
a. eX=1+x+=>+=+-
2! 3!

4

2 3
ln(l—x)=x+x—+x_+x_+...
2 3 4

x%  x3 x2  x3 x*
X — — N R o —_— —_— —_ e
(e*)(In(1 = x)) (1+x+2!+3!+ )(x+2+3+4+ )

Il
=
+

—~
=

N
+

1%

~—
+
~—~
| %
+
| %
+
| %
~—
+

18



b.

3 5 7

X X X

smx—x——+—|——+---
71
x X . X
: = 3 .5 .7 — 2 4 .6
sinx x_’;_' 3;_!_7;_'+ x<1_7;_! 3;_'_7;_'4.)
_ 1
— 2 x% 6
1—<?—E+7+ )
x?  x*  x® x?  x*  x
=t (G ) (G
x% x4 x% x4 x? x*
=1+ -GG+ ) (G-F+
X2 4 4
=1+ -+ +
3! 5!
=1+ +(__L)x4_|_...
120

=1+ +—x +
360

6
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