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                                                         The Weierstrass Theorem 

 

     Our next goal is to study 𝐶[𝑎, 𝑏], the metric space of continuous functions on a 

closed, bounded interval [𝑎, 𝑏] with the metric: 

                                        𝑑(𝑓, 𝑔) = sup
𝑎≤𝑥≤𝑏

|𝑓(𝑥) − 𝑔(𝑥)|. 

 

We want to be able to show that given any continuous function 𝑓 ∈ 𝐶[𝑎, 𝑏] we 

can find a sequence of polynomials {𝑝𝑛(𝑥)} on [𝑎, 𝑏] such that 𝑝𝑛(𝑥) → 𝑓(𝑥) 

uniformly on [𝑎, 𝑏] (which is the same as saying that 𝑝𝑛(𝑥) → 𝑓(𝑥) in the 

metric space 𝐶[𝑎, 𝑏]).  This is useful because it means given any continuous 

function 𝑓 ∈ 𝐶[𝑎, 𝑏], which could be fairly “complicated”, we can approximate it 

with a polynomial, which is a fairly “simple” function to work with.  That is, given 

any 𝑓 ∈ 𝐶[𝑎, 𝑏] and any 𝜖 > 0 there is a polynomial, 𝑝(𝑥) ∈ 𝐶[𝑎, 𝑏] with  

                                        sup
𝑎≤𝑥≤𝑏

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜖. 

 

This is a common theme in analysis.  We often try to approximate complicated 

functions with less complicated functions.  We then prove theorems with the less 

complicated functions and then show the theorem still holds when you take a 

limit of less complicated functions that converge to the more complicated 

function. 
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Lemma:  There is a linear map 𝑇 from 𝐶[0,1] onto 𝐶[𝑎, 𝑏] such that  

𝑑(𝑓, 𝑔) = 𝑑(𝑇(𝑓), 𝑇(𝑔))   (this is called an isometry) and polynomials get 

mapped to polynomials.  

 

Proof.  Let  𝜎: [𝑎, 𝑏] → [0,1] by   𝜎(𝑥) =
𝑥−𝑎

𝑏−𝑎
 ;  for 𝑎 ≤ 𝑥 ≤ 𝑏.  

            𝜎 is a continuous linear function from [𝑎, 𝑏] onto [0,1]. 

            We can define:            𝑇: 𝐶[0,1] → 𝐶[𝑎, 𝑏] 

                                                     𝑇(𝑓) = 𝑓 ∘ 𝜎. 

 

For example,  𝜎: [2,5] → [0,1] by   𝜎(𝑥) =
𝑥−2

5−2
=

𝑥−2

3
 ;  for 2 ≤ 𝑥 ≤ 5. 

If 𝑓(𝑥) = 𝑥2 ∈ 𝐶[0,1],  then 𝑇(𝑓) = 𝑓(𝜎(𝑥)) = 𝑓 (
𝑥−2

3
) = (

𝑥−2

3
)2 

Is a continuous function on [2,5].  

 

𝑇 is linear because for 𝑓, 𝑔 ∈ 𝐶[0,1] and 𝑎, 𝑏 ∈ ℝ: 

                𝑇(𝑎𝑓 + 𝑏𝑔) = (𝑎𝑓 + 𝑏𝑔)(𝜎(𝑥)) 

                                       = 𝑎𝑓(𝜎(𝑥)) + 𝑏𝑔(𝜎(𝑥)) 

                                        = 𝑎𝑇(𝑓) + 𝑏𝑇(𝑔). 

Since   𝜎−1(𝑡) = 𝑎 + 𝑡(𝑏 − 𝑎),    0 ≤ 𝑡 ≤ 1,  we can define an inverse for 𝑇 

by 

                                 𝑇−1(ℎ) = ℎ(𝜎−1(𝑡)) 

So 𝑇 is one to one and onto.  
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Now let’s show that 𝑇 is an isometry (i.e. 𝑑(𝑓, 𝑔) = 𝑑(𝑇(𝑓), 𝑇(𝑔)) ). 

 𝑑(𝑇(𝑓), 𝑇(𝑔)) = sup
𝑎≤𝑥≤𝑏

|𝑓(𝜎(𝑥)) − 𝑔(𝜎(𝑥))| = sup
𝜎(𝑎)≤𝑡≤𝜎(𝑏)

|𝑓(𝑡) − 𝑔(𝑡)|             

                             = sup
0≤𝑡≤1

|𝑓(𝑡) − 𝑔(𝑡)| = 𝑑(𝑓, 𝑔). 

𝑇 also maps polynomials to polynomials: 

        If 𝑝(𝑡) = ∑ 𝑎𝑘𝑡𝑘𝑛
𝑘=0   then  𝑇(𝑝) = 𝑝(𝜎(𝑥)) = ∑ 𝑎𝑘(

𝑥−𝑎

𝑏−𝑎
)𝑘𝑛

𝑘=0  , which 

is also a polynomial. 

 

This lemma says that for our purposes 𝐶[𝑎, 𝑏] and 𝐶[0,1] are identical.  Thus we 

can focus on 𝐶[0,1]. 

 

Def.  A set 𝐴 is separable if it has a countable dense subset. 

 

Ex.  ℝ is separable because ℚ is a countable dense subset. 

Ex.  ℂ is separable because {𝑎 + 𝑏𝑖| 𝑎, 𝑏 ∈ ℚ} is a countable dense subset. 

 

Theorem:  𝐶[0,1] is separable.  

 

Proof.  We must show that 𝐶[0,1] has a countable dense subset.  In other words, 

we must show that there is a countable subset 𝐴 ⊆ 𝐶[0,1] such that given any 

𝑓 ∈ 𝐶[0,1] and any 𝜖 > 0 we can find a function 𝑔 ∈ 𝐴 ⊆ 𝐶[0,1] such that: 

                                     sup
0≤𝑥≤1

|𝑓(𝑥) − 𝑔(𝑥)| < 𝜖.  
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Let 𝜖 > 0 be given and 𝑓 ∈ 𝐶[0,1].  

 

𝑓 is continuous on a compact set so it’s uniformly continuous.  Thus given any 

 𝜖 > 0 we can always find an 𝑛 such that |𝑓(𝑥) − 𝑓(𝑦)| <
𝜖

2
  whenever   

 |𝑥 − 𝑦| <
1

𝑛
 . 

 

Break up [0,1] into 𝑛 intervals, each of length 
1

𝑛
 . 

Define 𝑔 (
𝑘

𝑛
) = 𝑓 (

𝑘

𝑛
) for 𝑘 = 0,1,2, … , 𝑛. 

Now let 𝑔(𝑥) be linear on (
𝑘

𝑛
,

𝑘+1

𝑛
). 

For example, if 𝑛 = 4 we might have: 

 

 

 

 

 

 

 

 

 

 

 

 

    0              
1

4
                

1

2
               

3

4
               1 

𝑦 = 𝑓(𝑥) 

𝑦 = 𝑔(𝑥) 
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Thus sup
0≤𝑥≤1

|𝑓(𝑥) − 𝑔(𝑥)| <
𝜖

2
   , since on any subinterval 

𝑘

𝑛
≤ 𝑥 ≤

𝑘+1

𝑛
 , 

given any point 𝑥, 

                    |𝑓(𝑥) − 𝑓 (
𝑘

𝑛
)| <

𝜖

2
     and    |𝑓(𝑥) − 𝑓 (

𝑘+1

𝑛
)| <

𝜖

2
   

and 𝑔(𝑥) is always between 𝑔 (
𝑘

𝑛
) = 𝑓 (

𝑘

𝑛
) and 𝑔 (

𝑘+1

𝑛
) = 𝑓 (

𝑘+1

𝑛
). 

 

 

Now let ℎ(𝑥) be defined linearly on the intervals 
𝑘

𝑛
≤ 𝑥 ≤

𝑘+1

𝑛
 but at the points  

𝑘

𝑛
 , 𝑘 = 0,1,2, … , 𝑛  let ℎ (

𝑘

𝑛
) have a rational value such that  

                                      |ℎ (
𝑘

𝑛
) − 𝑔 (

𝑘

𝑛
)| <

𝜖

2
   ;    𝑘 = 0,1,2, … , 𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 
      0            

1

4
             

1

2
              

3

4
              1 

𝑦 = ℎ(𝑥) 

𝑦 = 𝑓(𝑥) 

𝑦 = 𝑔(𝑥) 𝑦 = 𝑓(𝑥) is in orange 

𝑦 = 𝑔(𝑥) is in green 

𝑦 = ℎ(𝑥) is in purple 
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Then   sup
0≤𝑥≤1

|ℎ(𝑥) − 𝑔(𝑥)| <
𝜖

2
    since ℎ(𝑥) − 𝑔(𝑥) is linear on  

𝑘

𝑛
≤ 𝑥 ≤

𝑘+1

𝑛
  

with 

 |ℎ (
𝑘

𝑛
) − 𝑔 (

𝑘

𝑛
)| <

𝜖

2
    and   |ℎ (

𝑘+1

𝑛
) − 𝑔 (

𝑘+1

𝑛
)| <

𝜖

2
    .   

 

Now by the triangle inequality: 

           |𝑓(𝑥) − ℎ(𝑥)| ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝑔(𝑥) − ℎ(𝑥)| for all 0 ≤ 𝑥 ≤ 1. 

So 

        sup
0≤𝑥≤1

|𝑓(𝑥) − ℎ(𝑥)| ≤ sup
0≤𝑥≤1

|𝑓(𝑥) − 𝑔(𝑥)| + sup
0≤𝑥≤1

|𝑔(𝑥) − ℎ(𝑥)| 

                                                   <                
𝜖

2
             +             

𝜖

2
        =    𝜖. 

 

     The set of all polygonal functions taking only rational values at the nodes 
𝑘

𝑛
,

𝑘 = 0,1,2, … , 𝑛  for some 𝑛 is countable.  This is because for each 𝑛, the set of 

all polygonal functions that have nodes at 
𝑘

𝑛
 , 𝑘 = 0,1,2, … , 𝑛  and take on 

rational values at these points is countable.  Then a countable union (over all 𝑛) of 

countable sets is countable.  

 

Weierstrass Approximation Theorem:  Given any 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝜖 > 0, there 

is a polynomial 𝑝 such that ‖𝑓 − 𝑝‖∞ = sup
𝑎≤𝑥≤𝑏

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜖.  Hence 

there is a sequence of polynomials {𝑝𝑛} such that 𝑝𝑛 → 𝑓 uniformly on [𝑎, 𝑏]. 

 

     Since 𝐶[𝑎, 𝑏] and 𝐶[0,1] are isometric, and polynomials get mapped to 

polynomials under our isometry, we only need to prove this theorem for 𝐶[0,1].  

We will actually construct a sequence of polynomials on [0,1], called Bernstein 

polynomials, that converge uniformly to a given 𝑓 ∈ 𝐶[0,1] (Bernstein’s theorem). 
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     Define {𝐵𝑛(𝑓)};   𝑛 = 1,2, …,  the Bernstein polynomials by: 

               𝐵𝑛(𝑓)(𝑥) = ∑ 𝑓(
𝑘

𝑛
)(

𝑛
𝑘

𝑛
𝑘=0 )𝑥𝑘(1 − 𝑥)𝑛−𝑘;        0 ≤ 𝑥 ≤ 1, 

      where (
𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!𝑘!
 .    

 

Ex.  Let 𝑓(𝑥) = √𝑥,  find 𝐵𝑛(𝑓)(𝑥) for 𝑛 = 2. 

 

𝐵2(𝑓)(𝑥) = 𝑓(0) (
2!

2! 0!
) 𝑥0(1 − 𝑥)2 + 𝑓 (

1

2
) (

2!

1! 1!
) 𝑥1(1 − 𝑥)1     

                              +𝑓(1) (
2!

0!2!
) 𝑥2(1 − 𝑥)0 

                  = (0)(1)(1 − 𝑥)2 + (
√2

2
) (2)𝑥(1 − 𝑥) + (1)(1)𝑥2 

𝐵2(𝑓)(𝑥) = √2(𝑥 − 𝑥2) + 𝑥2 = √2𝑥 + (1 − √2)𝑥2   

 

Let 𝑓0(𝑥) = 1,   𝑓1(𝑥) = 𝑥,     𝑓2(𝑥) = 𝑥2. 

     We will need the following lemma about Bernstein polynomials: 

Lemma:  

i. 𝐵𝑛(𝑓0) = 𝑓0  and  𝐵𝑛(𝑓1) = 𝑓1.   

 

ii. 𝐵𝑛(𝑓2) = (1 −
1

𝑛
) 𝑓2 +

1

𝑛
𝑓1.   Hence 𝐵𝑛(𝑓2) → 𝑓2 uniformly on [0,1].  

 

iii. ∑ (
𝑘

𝑛
− 𝑥)2(

𝑛
𝑘

𝑛
𝑘=0 )𝑥𝑘(1 − 𝑥)𝑛−𝑘 =

𝑥(1−𝑥)

𝑛
≤

1

4𝑛
 ;  if  0 ≤ 𝑥 ≤ 1.    

 

iv. Given 𝛿 > 0 and 0 ≤ 𝑥 ≤ 1, let 𝐹 denote the set of 𝑘 in {0,1,2, … , 𝑛} for 

which|
𝑘

𝑛
− 𝑥| ≥ 𝛿.  Then  ∑ (𝑘∈𝐹

𝑛
𝑘

)𝑥𝑘(1 − 𝑥)𝑛−𝑘 ≤
1

4𝑛𝛿2  .                                                   
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Proof of i. 

i. Recall              (𝑎 + 𝑏)𝑛 = ∑ (
𝑛
𝑘

𝑛
𝑘=0 )𝑎𝑘(𝑏)𝑛−𝑘  

So        (𝑥 + (1 − 𝑥))𝑛 = ∑ (
𝑛
𝑘

𝑛
𝑘=0 )𝑥𝑘(1 − 𝑥)𝑛−𝑘 = 1.  

 

Thus 𝐵𝑛(𝑓0) = 𝑓0 = 1.  

 

 

To show that 𝐵𝑛(𝑓1) = 𝑓1 = 𝑥 notice that  
𝑘

𝑛
(

𝑛

𝑘
) =

𝑘

𝑛
(

𝑛!

(𝑛−𝑘)!𝑘!
)   

 

 

           = 
(𝑛−1)!

(𝑛−𝑘)!(𝑘−1)!
 

 

 

           = (
𝑛 − 1
𝑘 − 1

).    

 

 This gives us: 

𝐵𝑛(𝑓1) = ∑
𝑘

𝑛
(
𝑛
𝑘

𝑛
𝑘=0 )𝑥𝑘(1 − 𝑥)𝑛−𝑘     

 

             = 𝑥 ∑ (
𝑛 − 1
𝑘 − 1

𝑛
𝑘=1 )𝑥𝑘−1(1 − 𝑥)𝑛−𝑘  

 

             = 𝑥 ∑ (
𝑛 − 1

𝑗
𝑛−1
𝑗=0 )𝑥𝑗(1 − 𝑥)(𝑛−1)−𝑗 = 𝑥. 

 

 
The Weierstrass approximation theorem follows from the previous lemma by 

showing that for all 𝜖 > 0, there exists an 𝑁 such that if  𝑛 ≥ 𝑁 then 

sup
0≤𝑥≤1

|𝑓(𝑥) − 𝐵𝑛𝑓(𝑥)| < 𝜖. 
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Ex.  Show that if 𝑓 ∈ 𝐶[𝑎, 𝑏] and ∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥 = 0
𝑏

𝑎
 for each 𝑛 = 0,1,2, …, 

then 𝑓(𝑥) = 0 on [𝑎, 𝑏]. 

 

 
The Weierstrass approximation theorem guarantees that there is a sequence of 

polynomial, 𝑝𝑛(𝑥), that converges uniformly to 𝑓(𝑥) on [𝑎, 𝑏]. 

 

Since 𝑝𝑛(𝑥) → 𝑓(𝑥) uniformly on [𝑎, 𝑏],  𝑝𝑛(𝑥)𝑓(𝑥) → 𝑓2(𝑥) uniformly on 

[𝑎, 𝑏]. 

 

Thus we have: 

                                lim
𝑛→∞

∫ 𝑝𝑛(𝑥)𝑓(𝑥)𝑑𝑥 = ∫ 𝑓2(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
. 

 

But since ∫ 𝑥𝑚𝑓(𝑥)𝑑𝑥 = 0
𝑏

𝑎
 for each  𝑚 = 0,1,2, …, then    

∫ 𝑝𝑛(𝑥)𝑓(𝑥)𝑑𝑥 = 0
𝑏

𝑎
  each  𝑛 = 0,1,2, ….   

 
 

 

Thus ∫ 𝑓2(𝑥)𝑑𝑥
𝑏

𝑎
= 0. 
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Claim: if  𝑔(𝑥) ≥ 0, and continuous, then ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
= 0  implies 𝑔(𝑥) = 0 

on [𝑎, 𝑏]. 

 
We prove this by contradiction.   

Suppose 𝑔(𝑥0) = 𝑐 > 0 for some point 𝑎 < 𝑥0 < 𝑏 then by continuity,  

given 𝜖 =
𝑐

2
  there exists a 𝛿 > 0 such that for  𝑥0 − 𝛿 < 𝑥 < 𝑥0 + 𝛿: 

|𝑔(𝑥) − 𝑔(𝑥0)| <
𝑐

2
 

                                                                                                                                                                         

 

                                                                                                                                                                               −
𝑐

2
< 𝑔(𝑥) − 𝑐 <

𝑐

2
 

                                               

 

                                                                                                                                                                                      0 <
𝑐

2
< 𝑔(𝑥) <

3𝑐

2
 .     

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus we have:     ∫ 𝑔(𝑥)𝑑𝑥 ≥ ∫ 𝑔(𝑥)𝑑𝑥 > ∫
𝑐

2
𝑑𝑥 > 0

𝑥0+𝛿

𝑥0−𝛿

𝑥0+𝛿

𝑥0−𝛿

𝑏

𝑎
 

which contradicts ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
= 0.  A similar argument works to show 𝑔(𝑎) = 0 

and 𝑔(𝑏) = 0. 

 

Thus since  ∫ 𝑓2(𝑥)𝑑𝑥
𝑏

𝑎
= 0 , 𝑓2(𝑥) ≥ 0 and continuous on [𝑎, 𝑏], 𝑓(𝑥) = 0 

on [𝑎, 𝑏]. 

 

𝑥0 − 𝛿    𝑥0   𝑥0 + 𝛿 

𝑐 

3𝑐

2
 

𝑐

2
 

𝑦 = 𝑔(𝑥) 

𝑎 𝑏 
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Ex.   Show that the Weierstrass approximation theorem is not true for (0,1). 

 

Let 𝑓(𝑥) =
1

𝑥
∈ 𝐶(0,1).    

The Weierstrass approximation theorem says that given any 𝜖 > 0 there exists a 

polynomial, 𝑝(𝑥), such that sup
0<𝑥<1

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜖. 

 

However, any polynomial 𝑝(𝑥) is bounded on (0,1) since it’s continuous on [0,1] 

and 𝑓(𝑥) =
1

𝑥
  is unbounded on (0,1) hence sup

0<𝑥<1
|𝑓(𝑥) − 𝑝(𝑥)| = ∞. 

 

Hence there does not exist a polynomial, 𝑝(𝑥), such that                       

sup
0<𝑥<1

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜖 

and the Weierstrass approximation theorem is not true for (0,1). 

 

 

 

Ex.  Show that there is no sequence of polynomials that converge uniformly to 

𝑓(𝑥) = 𝑒𝑥 on (0, ∞).  
 

If there was a sequence of polynomials that converges uniformly to 𝑓(𝑥) = 𝑒𝑥 

on (0, ∞) then given any 𝜖 > 0 there exists a polynomial, 𝑝(𝑥), such that 

sup
0<𝑥

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜖. 

 

Claim:  For any polynomial sup
0<𝑥

|𝑒𝑥 − 𝑝(𝑥)| = ∞. 

 

sup
0<𝑥

|𝑒𝑥 − 𝑝(𝑥)| = sup
0<𝑥

|𝑒𝑥| |1 −
𝑝(𝑥)

𝑒𝑥 |. 

 

Let 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛. 
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By repeated applications of L’Hopital’s rule: 

lim
𝑥→∞

𝑝(𝑥)

𝑒𝑥
= 0. 

 
 

  Thus sup
0<𝑥

|𝑒𝑥 − 𝑝(𝑥)| = sup
0<𝑥

|𝑒𝑥| |1 −
𝑝(𝑥)

𝑒𝑥 | = ∞.   

 

Therefore there does not exist a polynomial on (0, ∞) such that                    

                          sup
0<𝑥

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜖.   

 


