The Derivative of a Function from \mathbb{R}^n to \mathbb{R}^m

Def. A **linear transformation**, $T: \mathbb{R}^n \to \mathbb{R}^m$, is a function such that for all $u, v \in \mathbb{R}^n$ and $c \in \mathbb{R}$:

a.
$$T(u + v) = T(u) + T(v)$$

b.
$$T(cu) = cT(u)$$

A linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ can be represented with respect to the usual basis in \mathbb{R}^n and \mathbb{R}^m by an $m\times n$ matrix.

$$T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

where $T(e_i)=\sum_{j=1}^m a_{ji}e_j$, $e_j=(0,0,\ldots,1,0,0,\ldots,0)$ and the 1 is in the j^{th} place.

The coefficients of $T(e_i)$ appear in the i^{th} column of the matrix.

$$T(e_i) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix}.$$

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ and $S: \mathbb{R}^4 \to \mathbb{R}^3$ be linear transformations. Suppose:

$$T(1,0) = (0,2,3,1)$$
 $S(1,0,0,0) = (1,2,3)$
 $T(0,1) = (2,-1,-1,2)$ $S(0,1,0,0) = (-1,3,1)$
 $S(0,0,1,0) = (2,3,1)$
 $S(0,0,0,1) = (0,1,2)$.

Find a matrix representation of S and T with respect to the standard basis, then find a matrix representation of $S \circ T : \mathbb{R}^2 \to \mathbb{R}^3$.

$$T = \begin{pmatrix} 0 & 2 \\ 2 & -1 \\ 3 & -1 \\ 1 & 2 \end{pmatrix}; \qquad S = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 2 & 3 & 3 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix}.$$

The matrix representation of the composition, $S \circ T$, is gotten by matrix multiplication.

$$S \circ T = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 2 & 3 & 3 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & -1 \\ 3 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 16 & 0 \\ 7 & 8 \end{pmatrix}.$$

Prop. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a number, M, such that: $|T(h)| \leq M|h|$ for all $h \in \mathbb{R}^n$.

Proof: Let
$$h=(h_1,h_2,\dots,h_n)$$
 and $T=\begin{pmatrix} a_{11}&\cdots&\cdots&a_{1n}\\ \vdots&&&&\vdots\\ a_{m1}&\cdots&\cdots&a_{mn} \end{pmatrix}$ then,

$$|T(h)| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{pmatrix}$$

$$= \begin{vmatrix} a_1 \cdot h \\ a_2 \cdot h \\ \vdots \\ a_m \cdot h \end{vmatrix} \qquad \text{where } a_i = (a_{i1}, a_{i2}, \dots, a_{in})$$

$$= \sqrt{(a_1 \cdot h)^2 + (a_2 \cdot h)^2 + \dots + (a_m \cdot h)^2}$$

$$\leq \sqrt{(|a_1||h|)^2+(|a_2||h|)^2+\cdots+(|a_m||h|)^2} \ \ \text{Cauchy-Schwarz Inequality}$$

$$= \Big(\sqrt{|a_1|^2+|a_2|^2+\cdots+|a_m|^2}\Big)|h|.$$

Thus:

$$|T(h)| \leq \left(\sqrt{|a_1|^2 + |a_2|^2 + \cdots + |a_m|^2}\right)|h|.$$

So take
$$M = \sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_m|^2}$$
.

If $f: \mathbb{R} \to \mathbb{R}$, we say that f is differentiable at $a \in \mathbb{R}$ if

Or

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

This definition doesn't make any sense for a function $f: \mathbb{R}^n \to \mathbb{R}^m$ (in that case, $h \in \mathbb{R}^n$ and dividing by a vector is not defined).

However, we can think of any number, f'(a), as defining a linear transformation λ of $\mathbb R$ into $\mathbb R$ by:

$$\lambda: \mathbb{R} \to \mathbb{R}$$

 $\lambda(h) = (f'(a))h.$

So we could reformulate our definition of the derivative, f'(a), by saying:

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - f'(a)h}{h} = 0$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - \lambda(h)}{h} = 0$$

Thus, we say a function $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}$ if there is a linear transformation $\lambda: \mathbb{R} \to \mathbb{R}$ such that:

$$\lim_{h\to 0} \frac{f(a+h) - f(a) - \lambda(h)}{h} = 0$$

Note: Any linear transformation, λ , of \mathbb{R} into \mathbb{R} , λ : $\mathbb{R} \to \mathbb{R}$, is just multiplication by a fixed number; $\lambda(h) = ph$; $p \in \mathbb{R}$.

Now we can generalize this definition to: $f: \mathbb{R}^n \to \mathbb{R}^m$.

Def. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is **differentiable** at $a \in \mathbb{R}^n$ if there is a linear transformation, $\lambda: \mathbb{R}^n \to \mathbb{R}^m$, such that:

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = 0.$$

Notice that $(f(a+h)-f(a)-\lambda(h))\in\mathbb{R}^m$ and $h\in\mathbb{R}^n$. If this limit is 0, then we say: $Df(a)=\lambda$.

Theorem: If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then there is a unique linear transformation, $\lambda: \mathbb{R}^n \to \mathbb{R}^m$, such that:

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = 0.$$

Proof: Suppose $\tau: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation that also satisfies

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \tau(h)|}{|h|} = 0.$$

Then we have:

$$0 \le \lim_{h \to 0} \frac{|\lambda(h) - \tau(h)|}{|h|}$$

$$= \lim_{h \to 0} \frac{\left| (\lambda(h) - f(a+h) + f(a)) + (f(a+h) - f(a) - \tau(h)) \right|}{|h|}$$

$$\le \lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} + \lim_{h \to 0} \frac{|f(a+h) - f(a) - \tau(h)|}{|h|}$$

$$= 0 + 0 = 0, \qquad \Rightarrow \lambda(h) = \tau(h).$$

Ex. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ by f(x,y) = (xy, x + 2y). Using the definition of the derivative, show that:

$$Df(0,0) = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}.$$

We must show that $\lim_{h\to 0} \frac{\left|f\left(\overrightarrow{0}+h\right)-f\left(\overrightarrow{0}\right)-\lambda(h)\right|}{|h|} = 0$, where $\lambda = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$. If we let $h = (h_1,h_2)$ then:

$$\lim_{h \to 0} \frac{\left| f(\vec{0} + h) - f(\vec{0}) - \lambda(h) \right|}{|h|} = \lim_{h \to 0} \frac{\left| (h_1 h_2, h_1 + 2h_2) - {0 \choose 1} {0 \choose 1} {h_1 \choose h_2} \right|}{|h|}$$

$$= \lim_{h \to 0} \frac{\left| (h_1 h_2, h_1 + 2h_2) - (0, h_1 + 2h_2) \right|}{|h|} = \lim_{h \to 0} \frac{\left| (h_1 h_2, h_1 + 2h_2) - {0 \choose 1} {n_2 \choose h_2} \right|}{\sqrt{h_1^2 + h_2^2}}$$

Notice that
$$(h_1+h_2)^2=h_1^2+2h_1h_2+h_2^2\geq 0$$

$$h_1^2+h_2^2\geq -2h_1h_2$$

$$\frac{h_1^2+h_2^2}{2}\geq |h_1h_2|\;.$$

So:

$$0 \le \lim_{h \to 0} \frac{|h_1 h_2|}{\sqrt{h_1^2 + h_2^2}} \le \lim_{h \to 0} \frac{\frac{h_1^2 + h_2^2}{2}}{\sqrt{h_1^2 + h_2^2}} = \lim_{h \to 0} \frac{1}{2} \sqrt{h_1^2 + h_2^2} = 0$$

Thus
$$\lim_{h\to 0} \frac{|f(\vec{0}+h)-f(\vec{0})-\lambda(h)|}{|h|} = 0 \text{ and:}$$

$$Df(0,0) = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}.$$

Ex. Let $f: \mathbb{R}^2 \to \mathbb{R}$ by:

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} \quad ; \quad (x,y) \neq (0,0)$$
$$= 0 \qquad \qquad ; \quad (x,y) = (0,0).$$

Show f is not differentiable at (0,0).

Let's assume f is differentiable at (0,0) and derive a contradiction.

If f is differentiable at (0,0), then there is a linear transformation: $\lambda \colon \mathbb{R}^2 \to \mathbb{R}$ such that:

$$\lim_{h\to 0} \frac{|f(\vec{0}+h)-f(\vec{0})-\lambda(h)|}{|h|} = 0$$

where $h = (h_1, h_2)$.

Let
$$\lambda = (a_{11} \ a_{12})$$
 so if $(x, y) \in \mathbb{R}^2$, then:

$$\lambda(x,y) = (a_{11} \ a_{12}) {x \choose y} = a_{11}x + a_{12}y$$
, and

$$\lim_{h \to 0} \frac{\left| \frac{h_1 h_2}{\sqrt{h_1^2 + h_2^2}} - (a_{11} h_1 + a_{12} h_2) \right|}{\sqrt{h_1^2 + h_2^2}} = 0.$$

For this limit to exist we must get the same value, 0, no matter which direction h approaches (0,0).

Suppose $h = (h_1, 0)$; i.e. we approach (0, 0) along the x-axis.

$$\lim_{h_1\to 0}\frac{|-a_{11}h_1|}{\sqrt{h_1^2}}=\lim_{h_1\to 0}\frac{|a_{11}||h_1|}{|h_1|}=|a_{11}|=0$$
 so $a_{11}=0$.

Now approach (0,0) along the y-axis, i.e. $h_1=0$.

$$\lim_{h_2\to 0}\frac{|-a_{12}h_2|}{\sqrt{h_2^2}}=\lim_{h_2\to 0}\frac{|a_{12}||h_2|}{|h_2|}=|a_{12}|=0$$
 so $a_{12}=0$.

Thus, $\lambda=(a_{11}\ a_{12})=(0\ 0)$ maps all vectors in \mathbb{R}^2 to 0.

Knowing $\lambda=(0\ 0)$, let's approach (0,0) by $h=(h_1,h_1)$, i.e. $h_2=h_1$.

$$\lim_{h_1 \to 0} \frac{\left| \frac{h_1^2}{\sqrt{h_1^2 + h_1^2}} - 0 \right|}{\sqrt{h_1^2 + h_1^2}} = \lim_{h_1 \to 0} \frac{h_1^2}{(h_1^2 + h_2^2)} = \lim_{h_1 \to 0} \frac{h_1^2}{2h_1^2} = \frac{1}{2}.$$

But then:

$$\lim_{h\to 0} \frac{\left|f(\vec{0}+h)-f(\vec{0})-\lambda(h)\right|}{|h|} \neq 0$$

thus, f(x, y) does not have a derivative at (0, 0).

Ex. Let $f: \mathbb{R}^2 \to \mathbb{R}$ by:

$$f(x,y) = \frac{x^2 y^4}{x^4 + 6y^8} \qquad (x,y) \neq (0,0)$$

= 0 \quad (x,y) = (0,0).

Show that f(x, y) is not differentiable at (0, 0).

Let's assume f(x, y) is differentiable at (0, 0) and derive a contradiction.

If f is differentiable at (0,0), then there is a linear transformation, $\lambda \colon \mathbb{R}^2 \to \mathbb{R}$, where:

$$\lambda(x,y) = (a_{11} \quad a_{12}) \binom{x}{y} = a_{11}x + a_{12}y$$
 and

$$\lim_{h\to 0} \frac{|f(\vec{0}+h)-f(\vec{0})-\lambda(h)|}{|h|} = 0.$$

If we let $h = (h_1, h_2)$ then:

$$\lim_{h \to 0} \frac{\left| \frac{h_1^2 h_2^4}{h_1^4 + 6h_2^8} - (a_{11}h_1 + a_{12}h_2) \right|}{\sqrt{h_1^2 + h_2^2}} = 0.$$

For this limit to exist, we must get the same value, 0, when approaching (0,0) from any direction. In particular, suppose $h=(h_1,0)$ (i.e. we approach (0,0) along the x-axis).

$$\lim_{h_1 \to 0} \frac{|-a_{11}h_1|}{\sqrt{h_1^2}} = 0 \quad \Rightarrow \quad a_{11} = 0.$$

Now approach (0,0) along the y-axis (i.e. $h_1=0$):

$$\lim_{h_2 \to 0} \frac{|-a_{12}h_2|}{\sqrt{h_2^2}} = 0 \quad \Rightarrow \quad a_{12} = 0$$

Thus, $\lambda = (a_{11} \quad a_{12}) = (0 \quad 0)$.

Knowing $\lambda=(0\quad 0)$, let's approach (0,0) by $h_1=h_2^2$ (i.e. $h=(h_2^2,h_2)$).

$$\lim_{h \to 0} \frac{\left| f(\vec{0} + h) - f(\vec{0}) - \lambda(h) \right|}{|h|} = \lim_{h_2 \to 0} \frac{h_2^4 h_2^4}{(h_2^8 + 6h_2^8) \sqrt{h_2^4 + h_2^2}}$$

$$= \lim_{h_2 \to 0} \frac{h_2^8}{(7h_2^8) \sqrt{h_2^4 + h_2^2}}$$

$$= \lim_{h_2 \to 0} \frac{1}{(7) \sqrt{h_2^4 + h_2^2}} \neq 0.$$

Thus:

$$\lim_{h \to 0} \frac{\left| f(\vec{0} + h) - f(\vec{0}) - \lambda(h) \right|}{|h|} \neq 0$$

and Df(0,0) does not exist.

Theorem: If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then it's continuous at $a \in \mathbb{R}^n$.

Proof: To show f is continuous at $a \in \mathbb{R}^n$ we need to show:

$$\lim_{x \to a} f(x) = f(a) \text{ or equivalently } \lim_{h \to 0} \left(f(a+h) - f(a) \right) = 0.$$

We need to use the fact that Df(a) exists:

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = 0$$

for some linear transformation $\lambda \colon \mathbb{R}^n \to \mathbb{R}^m$.

Notice that:

$$0 \le |f(a+h) - f(a)| = |f(a+h) - f(a) - \lambda(h) + \lambda(h)|$$

$$\le |f(a+h) - f(a) - \lambda(h)| + |\lambda(h)|$$

$$= \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} \cdot |h| + |\lambda(h)|.$$

For any linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$, we know there is a $M\in\mathbb{R}$ such that:

$$|T(h)| \le M|(h)|.$$

Thus:

$$0 \le |f(a+h) - f(a)| \le \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} |h| + M|h|.$$

Letting $h \to 0$ we know the RHS becomes 0 (why?).

Thus by the squeeze theorem:

$$\lim_{h \to 0} |f(a+h) - f(a)| = 0.$$

Hence:

$$\lim_{h \to 0} (f(a+h) - f(a)) = 0$$
$$\lim_{h \to 0} f(a+h) = f(a).$$

Differentiation Theorems:

The Chain Rule: If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at a, and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at f(a), then $g \circ f: \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at a, and: $D(g \circ f)(a) = Dg(f(a)) \circ Df(a).$

- 1) If $f\colon \mathbb{R}^n \to \mathbb{R}^m$ is a constant function, then Df(a)=0
- 2) If $f\colon \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then Df(a) = f
- 3) If $f: \mathbb{R}^n \to \mathbb{R}^m$, then f is differentiable at $a \in \mathbb{R}^n$ if, and only if, f_i is differentiable and $Df(a) = \big(Df_1(a), \dots, Df_m(a)\big)$. Thus, Df(a) is the $m \times n$ matrix whose i^{th} row is $Df_i(a)$
- 4) If $g\colon \mathbb{R}^2 \to \mathbb{R}$ is defined by g(x,y)=x+y, then Dg(a,b)=g
- 5) If $m: \mathbb{R}^2 \to \mathbb{R}$ is defined by m(x,y) = xy, then (Dm(a,b))(x,y) = bx + ay, thus Dm(a,b) = (b-a).

Proof:

1.

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - 0|}{|h|} = 0$$

2.

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - f(h)|}{|h|} = \lim_{h \to 0} \frac{|f(a) + f(h) - f(a) - f(h)|}{|h|} = 0$$

3. If f_i is differentiable at a and $\lambda = \left(Df_1(a), \dots, Df_m(a)\right)$, then: $f(a+h) - f(a) - \lambda(h) = \left(f_1(a+h) - f_1(a) - Df_1(a)(h), \dots, f_m(a+h) - f_m(a) - Df_m(a)(h)\right)$ So, $\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} \leq \lim_{h \to 0} \sum_{i=1}^m \frac{|f_i(a+h) - f_i(a) - Df_i(a)(h)|}{|h|} = 0.$

Thus f is differentiable at a and $Df(a) = \lambda$.

If f is differentiable at a, then by #2 and the chain rule, $f_i=\pi_i\circ f$ is differentiable at a where $\pi_i(x)=x_i$, and

$$Df_i(a) = D\pi_i(f(a)) \circ Df(a)$$
$$= \pi_i \circ Df(a)$$

Thus $Df(a) = (Df_1(a), \dots, Df_m(a)).$

4. Since g(x,y)=x+y is a linear transformation from $\mathbb{R}^2\to\mathbb{R}$, it follows from #2 that Dg(a,b)=g.

5. Let
$$\lambda(x, y) = bx + ay$$
, then

$$\lim_{h \to 0} \frac{|m(a+h_1,b+h_2) - m(a,b) - \lambda(h_1,h_2)|}{|(h_1,h_2)|} = \lim_{h \to 0} \frac{|h_1 h_2|}{\sqrt{h_1^2 + h_2^2}}.$$

Notice that:

$$|h_1 h_2| \le |h_1|^2$$
 if $|h_2| \le |h_1|$
 $|h_1 h_2| \le |h_2|^2$ if $|h_1| \le |h_2|$

Hence:

$$|h_1 h_2| \le |h_1|^2 + |h_2|^2$$
.

So we can write:

$$0 \le \frac{|h_1 \ h_2|}{\sqrt{h_1^2 + h_2^2}} \le \frac{h_1^2 + h_2^2}{\sqrt{h_1^2 + h_2^2}} = \sqrt{h_1^2 + h_2^2}$$

$$\Rightarrow \lim_{h \to 0} \frac{|h_1 h_2|}{\sqrt{h_1^2 + h_2^2}} = 0.$$

Corollary: If f , $g \colon \mathbb{R}^n \to \mathbb{R}$ are differentiable at a , then

i)
$$D(f+g)(a) = Df(a) + Dg(a)$$

ii)
$$D(f \cdot g)(a) = g(a)Df(a) + f(a)Dg(a)$$

iii) If $g(a) \neq 0$, then:

$$D\left(\frac{f}{g}\right)(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{\left(g(a)\right)^2}$$

Proof of ii:

Let
$$F: \mathbb{R}^n \to \mathbb{R}^2$$
 by $F(x) = \left(f(x), g(x)\right)$
 $p: \mathbb{R}^2 \to \mathbb{R}$ by $p(x_1, x_2) = x_1 \cdot x_2$
then, $f(x)g(x) = p \circ F(x)$.

$$D(fg)(a) = D(p \circ F)(a)$$

$$= Dp(F(a)) \circ DF(a)$$
 Chain Rule
$$= Dp(f(a), g(a)) \circ DF(a)$$

$$= \left(g(a) \ f(a)\right) \binom{Df(a)}{Dg(a)}$$
 by #3, #5
$$= g(a)Df(a) + f(a)Dg(a).$$