Uniform Convergence of Series: The Weierstrass M-Test

Def. ).;21 M; = M ; where M;, M € R, means given:
S, =M,

S, =M, + M,

S3 =M, + M, + M;

Sn :M1+M2+M3+"'+Mn
then M = lim S,,.

Def. S(x) = X2, fi(x) ifgiven S, (x) = X1v, f: (%),
S1(x) = f1 (%)

S,(x) = f1(x) + f(x)
S3(x) = f1(x) + f2(x) + f3(x)

Sn(x) = f1(x) + () + f3(x) + -+ + f(x)

then lim S,,(x) = S(x) where this limit means pointwise convergence.
n—>00

i—1
Ex. Let f;(x) = o then

x2 x3 xn—l
Sn(X) = ?zlfi(x) =1+x +;+;+ e 4 n—1)!
2 3 n—1
S(x) = lim 5, (x) = 1+x+%+z—!+---+(z_1)!+---=ex.



Def. We say ).;24 fi(X) converges uniformly to S(x) if the sequence of
functions S, (x) converges uniformly to S(x).

Theorem (Weierstrass M Test): Let {f;,(x)} be a sequence of functions on I.
Suppose that each f,,(x) is bounded on I, i.e. there exists real numbers M,, such

that |f,(x)| < M, forallx € I. If Y71 M,, converges then X7 1 f,(x)
converges uniformly on I.

Proof: We know that S, (x) = X7, fi(x) converges uniformly to S(x) if and
only if for all € > 0 there existsan N € Z%, such thatforallx € I, ifn,m > N

then |S,,(x) — S,,(x)| < € (by the theorem we proved in the last section).

Assuming m > n:

Sm(x) — Sp(x) = XLy filx) — Xitq filx) = XiZ,41 fikx).
So we need to force |S;,(x) — S, (x)] = [X1,,+1 fi(0)] <e.

Soif we can finda N € Z*, such thatforallx € I, ifn,m > N then

|Z —— fi(x)| < € we will have proved »%_; f,(x) converges uniformly on I.

Since Y., M,, converges we know given any € > 0 there exists an N’ € Z* such
that m,n = N’ implies that

|Zl n+1M|— n+1+Mn+2+ +M < E.

Let N = N'. Then we have by the triangle inequality:

1Sm () = S (O] = X741 i < 1fns1 GOl + [ a2 GOl + - | fn ()]

< Mn+1 + Mn+2 + °° + Mm < €.
S0 Yo 1 frn(x) converges uniformly on I.



xn
Ex. Prove Z?f:o; converges uniformly to f(x) = e* on the interval [—k, k].

xn
Notice that if we let f;, (x) = —+ then we have:

()| = | | <— for all x € [—k, k.

kn
Y=o —7 converges by the ratio test since:

(k)n+1

k
= lim |7~ = lim —=0< 1.
n-oo n-ooon+1
n!

Mp+1

lim

n—oo

n

xn
So by the Weierstrass M Test Z%ozo oy converges uniformly on the interval

n
[—k, k]. We know from Taylor series that },n—g % converges to f(x) = e”*.

2 4o cos(2kx)
Ex. Show that the series— — — Zk 1
T T (2k-1)(2k+1)

converges uniformly on R.

(This is the Fourier series for f(x) = |sinx]|; x € R\

f(x) = |sinx|

AVAV

\

—21 L -7 0

2T



cos(Znx)
2n—-1)(2n+1)’

. cos(2nx) 1
| = 1 G ann | = 2=

If we take f,,(x) = then

=M, forall x € R.

1 .
Zflo:l an2_] converges by either the integral test or the comparison test with

1
27010=1 32 (which converges because it’s a constant multiple of a p-series with

p > 1).

o0 cos(2kx)
Thus 2= (2k—1)(2k+1)
M-test.

converges uniformly for all x € R by the Weierstrass

2 4 o cos(2kx)
Hence so does — — — Zk:l .
T T (2k—-1)(2k+1)

—-_nx

Ex. Determine where Z;'lo:l . e converges pointwise and uniformly.

For pointwise convergence:

Apply the ratio test.

X —(n+Dx nx
|G () (o) = tim () (2)
Nim [Fe] = lm (727) (o) = Jim (7)) &) <1
. . 1
Since lim —— = 1, lim (L) (—) <1 whenx >0
n—oon+1 n—oo \n+1 ex

> 1 whenx < 0.

So the series converges for x > 0 and diverges for x < 0.

X _ .
Atx = 0; Z%oﬂze W =7%>,.0=0; sothe series converges.



For uniform convergence we want to use the Weierstrass M-test.
X . , .
Let fn(x) = ;e X >0, forx = 0 (the series can’t converges uniformly

for values of x where it diverges).

To use the Weierstrass M-test we need to find an upper bound for |f;, (x)|
when x > 0. So let’s find the absolute maximum/minimum values for f;, (x).

fa(x) = l[X(—n)e_nx + e ™ = : (1—-nx)e ™™ =0

n —Tl
implies x = ~
Implies = —.
p n

1 1
[ (%) goes from positive to negative as x goes through x = —,S0X =~ isa

local maximum. Since this is the only critical point, it must be a global maximum

1
(notice that the function is increasing everywhereon 0 < x < - and decreasing

1
everywhere on - < x < ).

Since f,(x) = 0, we have |f,,(x)| = f,,(x). Thus a global maximum of f;,(x)
is a global maximum of | f,, (x)|.

1

) =zemW=Let = |f@|=f,0 <t =M,

n

in the Weierstrass M-test.

1 _ _ 1 _ ,
Y1 My, = Z;’leﬁe l=e™1 Z,oleﬁ; which converges because it’s a

constant time a p-series withp > 1.

X _ .
Thus Y ;-1 ~e "X converges uniformly for x > 0.



2

X
Ex. Show Y~ ; ————— converges pointwise for all |x| < 1, but not uniformly.
o x? or 1 1 1
St ez = X1 ]
(1+x2)n 1+x2  (1+x2)2  (1+x?)3
x2 1 1
= + - |; eometric series].
1+x2 [ 1+x2  (1+4x2)2 I e ]

1
If x # 0, then | >
1+x

1

o 14x27

a
< 1, so the sum inside the bracket is T where a = 1 and

2

o X _ x? 1 5 1 1
ZTl=1 2yn 2 1 =X 2 -
(1+x4)" 1+x 1—1+ > 1+x4-1

X

x2

If x = 0, all of the terms are 0, so Z?{)=1 m =0

00 x? _ .
SO Y1 T 1 ifx+0, |[x] <1
=0 if x = 0.

2
X
Thus Zf{’zlm converges for all |x| < 1.

To show that the convergence is not uniform, we show that the partial sums
S, (x) don’t converge uniformly to:

S(x)=1 ifx#0, [x|] <1
=0 ifx =20



x? x? 1 1 1
Sp(x) =X . = e ——1.
n (%) J=1 (14x2)] 142 [ 14x2  (1+x2)2 (1+x2)n-1]
1T 2 n—1
Now since =14+r+r°+--+1r" " weget:
1 2011
S (x) = x2 |1 (1+x2)| _ x=(1 (1+x2)n) —1_ 1
n 1+x2 | 1——1 5 1+x%-1 (1+x?)n”
1+x

For S,,(x) — S(x) uniformly we would need to show that for all € > 0 there
exists an N € Z* such thatif n > N then:

1S,,(x) —S(x)| < € forall x with |x| < 1.

If x # 0 and |x| < 1, we know that S(x) = 1. So our epsilon statement becomes:

1
~ G| =

< € forallx # 0 with |x| < 1.

n

‘_ (14x2)

Now let’s show we can’t find an N that works for all x with |x|] < 1, x # 0.

1
Choose € = 2

If you fix an N, no matter how large it is, we can always find a point x with

1
(1+x2)"

1
|x] <1, x # 0such that ‘— 25.



1 1
For example, let’s show we can always find an x with ——— = .

(1+x2)n
e =
(1+x»)"=2
1+ x?%= 2%
x?% = 2% —1

1 1
x=2(2n—1)2 (notice that |x| < 1,x # 0)

So no matter how large N is there is always an x # 0, |x| < 1 where

1S.0) =S| =52 e = 3.

Thus S,,(x) does not converge uniformly to S(x) on |x| < 1.

2

Note that Yn—q 7 does converge uniformlyto 1on 0 < a < |x| < 1.

_x
(1+x2)
We can see this by:

1 1 1
I$n(00) = SCIl = |1 =z - 1| N ‘_ )" )"
1 1

< <1: — P
Butfor 0 <a < |x| < 1: A = (Qradm



So if we can force < € then we can force |S, (x) — S(x)| = -

1
(1+x2)

(1+a?)"
1
(1+a?)"

(14 a®)" >§
(Min(1 +a?) > In©)

In(7)

— & . < <
n(1+a2) for0<a<|x| <1

n >
In() . 1
Choose N > max(0, —az))’ (ife>1, In (Z) < 0).

In(1+
1
ln(E) we get:

Now if we work the inequalities backward from n > —ln(1+a2) )
5,00 =@ = [1- L —1| = |- L
(14+x2) (14+x2)
1
< - for0<a<|x| <1
(1+a?)

< E.

2
X
Note: we could also show that )., —; ——= converges uniformly to 1 on

(1+x2)
0 < a < |x| < 1 with the Weierstrass M-test by letting f,,(x) =

x
(14x2)" and

showing for any a > 0, there exists an N such that forn > N, |f,,(x) |takes its
maximum value at x = a. Thus we have:

xZ
(1+x2)"

1 —
= (14+a?)"

n-

<1.

Y>> 1 M, converges because it’s a geometric series with |1| = T aZ
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Recall that the radius of convergence for a power series Y.o—o ¢, (x — a)™ is given

byr = lim

n—oo

if the limit exists (you get this from applying the ratio test to

Cn+1
the terms of the power series). This means that given any x such that

|x — a| < r, the power series will converge absolutely for that value of x.

Theorem: Let r be the radius of convergence of the power series

Yo Cn(x —a)™. Then Yo, ¢ (x — @)™ converges uniformly for all x such
that|x —al| < p <r.

Proof: Let p be any number such that 0 < p < r. Then for any x such that
|x — a| < p we have:

len(x — a)™| < [cnlp™.
A power series converges absolutely for any x with |x — a| = p<Tr.

Let M), = |cu|p™ and f,(x) = ¢, (x — a)™

Then | f,,(x)| < M,, and Y- M,, converges.

Thus by the Weierstrass M Test Y,n—o Cn (X — @)™ converges uniformly for all x
suchthat|[x —al| < p <.
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Theorem: Suppose {f,,(x)} is a sequence of functions which are integrable on
[a, b] and uniformly converge to f (x), an integrable function on [a, b] then

[ f@dx = lim [ f,(x)dx.

Proof: Since {f,,(x)} converges uniformly to f(x) we know given any € > 0 there
existsan N € Z*, such that for all x € [a, b], ifn = N then

@) = FOO] <35

Soforn > N:
|2 F)dx — [ fdx| =1 [2(f(0) = fu(0))dx]
< [21F () = fu(®)|dx

b € €
amdx—m(b—a)—e.

so [, f()dx = lim [ f,(o)dx.

Since Y=o Cn (X — @)™ converges uniformly for all x such that

Ix — aI < p < r,where 7 is the radius of convergence of the power series, it
follows from the previous theorem that:

[3 Zivmo cn(x — )™ dx = B0 [, cn(x — a)"dx

aslongas|p—a|<r, |g—al <r.

This allows us to find Taylor series (i.e. a power series) representation of some
function within their radius of convergence.
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Ex. Find a power series representation of f(x) = tan™!(x) for |x| < 1.

_o 1+¢t2

t=x
=j (I—t*+t* =t + - (—D)"t*" + -+ )dt
t

=0
t3  t5  t7 (—1)"t2n+1 t=x
St=—g oottt lt=0
3 x5 X7 1 nx2n+1 1 n 2n+1
—x—x—+———+ +L Zn 0( )X
2n+1 2n+1

Notice that this power series representation does converge at x = 1 and gives us
an interesting expression for tan™11 = %

s 1 1
amﬂ1:Z:1__+§_7+ -+
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Theorem: Suppose {f, (x)} is a sequence of functions on [a, b] that converge
pointwise to f (x). Suppose that {f;,"(x)} converges uniformly on [a, b] to a
continuous function g(x). Then f () is differentiable on [a, b] and

FG) = lim £,/ (o).
Proof: By the previous theorem: 7lll_rEJIo f; i/ ()dt = f; rlll_r)Elo fr()dt
lim (f,(0) = ful@) = [, g(D)dt
fG) = f(a) = [ g(®dt.

Since g(t) is continuous we know from the fundamental theorem of calculus

that: f'(x) = g(x).

Thus:

{f,,'(x)} converges uniformly on [a, b] to a continuous function g(x) = f'(x)
and f'(x) = lim f,'(x).
n—>0o
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Theorem: If f(x) = Y.o= € (X — @)™ has a radius of convergence of r, then

(00]

f100 =) nea(x— ayt

n=1

also has a radius of convergence of r.

Proof:
let S, (x) = ¥ ci(x — a)t.

Each S, (x) is differentiable and S,,"(x) = Y1, ic;(x — a)' L.

If {Sy,(x)} converges uniformly in |[x — a| < p < r (we haven’t shown this, but
it’s true), then it converges to a continuous function (since all of the {S;, (x)} are
continuous). Thus from our previous theorem:

£100) = lim Sn() = Ziizanen (e — @y,

Ex. This means we can find the Taylor series of f’'(x) by differentiating the Taylor
series of f(x) term by term and it will have the same radius of convergence as
the Taylor series for f(x).

zx" for|x| <1

n=

f'(x) = x)2 = Yo nx" ", for|x| <1

fO) =

o

f'(x) = = x)3 =y>,nn—Dx"1, for|x|<1.



