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                                            Uniform Convergence 

 

Def.  Suppose {𝑓𝑛(𝑥)} is a sequence of functions 𝑓𝑛: 𝐼 ⊆ ℝ → ℝ, where 𝐼 is an 

interval (bounded or unbounded, open, closed, or neither) in ℝ.  We say {𝒇𝒏(𝒙)} 

converges pointwise to 𝒇(𝒙), and write lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥), if for each 𝑥 ∈ 𝐼, the 

sequence of real numbers {𝑓𝑛(𝑥)} converges to 𝑓(𝑥).   

That is, for all 𝜖 > 0 there exists an 𝑁𝑥 ∈ ℤ+ (i.e. 𝑁𝑥 can depend on 𝑥), such that if 

𝑛 ≥ 𝑁𝑥 then |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖. 

 

Ex.  Let 𝑓𝑛(𝑥) = 𝑥𝑛,  on 𝐼 = [0,1].  Prove that: 

        lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) = 0      𝑖𝑓   0 ≤ 𝑥 < 1 

                                           = 1      𝑖𝑓    𝑥 = 1. 

 

 

 

 

 

 

 

 

 

     For example, if  𝑥 =
1

2
 ,  the sequence {𝑓𝑛(

1

2
)} = {(

1

2
)

𝑛
} → 0 as 𝑛 → ∞. 

     However,  if 𝑥 = 1 , the sequence {𝑓𝑛(1)} = {(1)𝑛} → 1 as 𝑛 → ∞. 

 

𝑓1(𝑥) = 𝑥 

𝑓2(𝑥) = 𝑥2 

𝑓3(𝑥) = 𝑥3 

𝑓10(𝑥) = 𝑥10 

1 

1 
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We must show given any 𝜖 > 0 there exists an 𝑁𝑥 ∈ ℤ+, such that if 𝑛 ≥ 𝑁𝑥 

then |𝑥𝑛 − 𝑓(𝑥)| < 𝜖. 

 

If 𝑥 = 1,  then |1𝑛 − 1| = 0 < 𝜖 for any 𝑛, so we can choose 𝑁𝑥 = 1. 

If 𝑥 = 0, then |0𝑛 − 0| = 0 < 𝜖 for any 𝑛, so we again can choose 𝑁𝑥 = 1. 

 

If 0 < 𝑥 < 1, then:    |𝑥𝑛 − 0| < 𝜖 

                      |𝑥|𝑛 < 𝜖 

              (𝑛)𝑙𝑛|𝑥| < 𝑙𝑛𝜖    

                       𝑛 >
𝑙𝑛𝜖

ln|𝑥|
        (since ln|x| < 0 because 0 < 𝑥 < 1) 

 

So choose  𝑁𝑥 > max (
𝑙𝑛𝜖

𝑙𝑛|𝑥|
, 0);   If 𝑛 ≥ 𝑁𝑥 then:   

|𝑥𝑛 − 0| = |𝑥|𝑛 < |𝑥|
𝑙𝑛𝜖

ln|𝑥| = (𝑒ln|𝑥|)
𝑙𝑛𝜖

ln|𝑥| = 𝑒𝑙𝑛𝜖 = 𝜖. 

 

     Notice that each 𝑓𝑛(𝑥) in this example is a continuous function, but the  

     sequence of functions converges pointwise to a discontinuous function. 
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Ex.  Let 𝑓𝑛(𝑥) = 4𝑛2𝑥                      if 0 ≤ 𝑥 ≤
1

2𝑛
 

                        = −4𝑛2𝑥 + 4𝑛        if  
1

2𝑛
< 𝑥 ≤

1

𝑛
 

                            = 0                             if  
1

𝑛
< 𝑥 ≤ 1. 

 

 

 

 

 

 

 

 

  

Notice that for any 0 ≤ 𝑥 ≤ 1,  lim
𝑛→∞

𝑓𝑛(𝑥) = 0.  That is 𝑓𝑛(𝑥) → 𝑓(𝑥) = 0 

pointwise on [0,1].  Let’s prove this.  

 

We must show that for all 𝜖 > 0, there exists an 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then  

|𝑓𝑛(𝑥) − 0| < 𝜖.   Note: the 𝑁 can depend on the point 𝑥. 

Notice that if we choose  𝑁 >
1
𝑥

 , when 𝑥 ≠ 0, then we have:    

                        𝑛 ≥ 𝑁 >
1
𝑥

    or equivalently    
1

𝑛
<  𝑥.      

But if 𝑥 >
1

𝑛
  then 𝑓𝑛(𝑥) = 0 so   |𝑓𝑛(𝑥) − 0| = |0 − 0| = 0 < 𝜖. 

If 𝑥 = 0, then 𝑓𝑛(0) = 0 for all 𝑛 so for any 𝑁 ∈ ℤ+, if 𝑛 ≥ 𝑁 then  

                           |𝑓𝑛(𝑥) − 0| = |0 − 0| = 0 < 𝜖. 

Thus 𝑓𝑛(𝑥) → 𝑓(𝑥) = 0 pointwise on [0,1].  

1 1

2
 

1

3
 

2 

4 

6 

𝑓1(𝑥) 

𝑓2(𝑥) 

𝑓3(𝑥) 

2𝑛 

1

𝑛
 

1

2𝑛
 

1 

𝑓𝑛(𝑥) 
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 However, notice that: 

∫ 𝑓𝑛(𝑥)𝑑𝑥 = 1
1

0
 for all 𝑛, so lim

𝑛→∞
∫ 𝑓𝑛(𝑥)𝑑𝑥 = 1

1

0
. 

But ∫ lim
𝑛→∞

𝑓𝑛(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 0𝑑𝑥 = 0
1

0

1

0

1

0
. 

So  we have    lim
𝑛→∞

∫ 𝑓𝑛(𝑥)𝑑𝑥 ≠ ∫ lim
𝑛→∞

𝑓𝑛(𝑥)𝑑𝑥
1

0

1

0
. 

 

     To try to avoid having a sequence of continuous functions converging to a 

discontinuous function, or having a sequence of integrable functions whose 

integrals don’t converge to the integral of the limit, we need a “stronger” 

definition of “convergence”. 

 

Def.  A sequence of functions {𝑓𝑛(𝑥)} , 𝑓𝑛: 𝐼 ⊆ ℝ → ℝ, where 𝐼 is an interval 

(bounded or unbounded, open, closed, or neither) in ℝ, converges uniformly to 

𝒇(𝒙) if  

 for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+, such that for ALL 𝑥 ∈ 𝐼,  if 𝑛 ≥ 𝑁 then 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖.  

 

1. Notice that for pointwise convergence the 𝑁 can depend on the point 𝑥 ∈ 𝐼 

as well as 𝜖.  For Uniform convergence the 𝑁 depends only on 𝜖 and NOT 

the point 𝑥 ∈ 𝐼. 

 

2. Uniform convergence is a stronger condition than pointwise convergence.  

Thus if a sequence of functions converges uniformly to a function 𝑓(𝑥), 

then it must converge pointwise to 𝑓(𝑥).  However, if a sequence of 

functions converges pointwise to 𝑓(𝑥) then it may, or may not, converge 

uniformly to 𝑓(𝑥).  

 

3. This definition is equivalent to saying that lim
𝑛→∞

sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0. 

This gives us another way to prove {𝑓𝑛(𝑥)} does or does not converge 

uniformly to 𝑓(𝑥). 
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Ex.  Show that {𝑓𝑛(𝑥)} converges uniformly to 𝑓(𝑥)on 𝐼 if and only if   

       lim
𝑛→∞

sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0.  

 

 

 

⟹   Suppose that {𝑓𝑛(𝑥)}  converges uniformly to 𝑓(𝑥) on 𝐼.   
 

        We must show that lim
𝑛→∞

sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0. 

        That is, given any 𝜖 > 0 there exists an 𝑁 ∈ ℤ+such that if 𝑛 ≥ 𝑁  then  

        | sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| − 0| < 𝜖,  or equivalently, sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖. 

 

      Since {𝑓𝑛(𝑥)} converges uniformly to 𝑓(𝑥)on 𝐼 we have: 

     for all 𝜖 > 0 there exists an 𝑁′ ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛 ≥ 𝑁′  then  

     |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜖

2
   (since 𝜖 is an arbitrary positive number we can use 

𝜖

2
).  

 

     Choose 𝑁 = 𝑁′. 

     Then sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤
𝜖

2
< 𝜖. 

     Thus  lim
𝑛→∞

sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0. 

 

  ⟸  Suppose lim
𝑛→∞

sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0. 

         We must show that {𝑓𝑛(𝑥)}converges uniformly to 𝑓(𝑥) on 𝐼. 

         That is, for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛 ≥ 𝑁 

          then |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖.  

 

          Since lim
𝑛→∞

sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0, we know there exists an 𝑁′ ∈ ℤ+, 

           such that if 𝑛 ≥ 𝑁′  then sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖. 
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           Choose 𝑁 = 𝑁′, then we have for all 𝑥 ∈ 𝐼: 

            |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖.   

 

            Thus {𝑓𝑛(𝑥)}converges uniformly to 𝑓(𝑥) on 𝐼.  

 

Ex.  The sequence of functions {𝑥𝑛} converges pointwise to the function: 

        𝑓(𝑥) = 0   if  0 ≤ 𝑥 < 1 

                  = 1   if   𝑥 = 1   

      on 𝐼 = [0,1], but not uniformly. 

 

 

 

 

 

 

 

 

     In the first example we saw that {𝑥𝑛} converges pointwise to 𝑓(𝑥).  To see that 

any 𝑁 we use must depend on the 𝑥 ∈ [0,1], notice that if 0 < 𝑥 < 1 and we try 

to solve for an 𝑁 that will work we get from the epsilon statement: 

              |𝑥𝑛 − 0| < 𝜖  is equivalent to 𝑛 >
𝑙𝑛𝜖

ln|𝑥|
                                                         

Thus if  𝜖 < 1, as 𝑥 goes to 1, 
𝑙𝑛𝜖

ln|𝑥|
 goes to ∞, thus there is no 𝑁 that will work for 

all 0 ≤ 𝑥 ≤ 1 . 
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Another way to see this is if we choose 𝜖 =
1

2
 , given any positive integer 𝑛, we 

can always find an 𝑥, where 0 ≤ 𝑥 < 1 and |𝑥𝑛 − 𝑓(𝑥)| = |𝑥𝑛 − 0| ≥
1

2
 .  

 

|𝑥𝑛| ≥
1

2
   is equivalent to 𝑥 ≥ (

1

2
)

1

𝑛    (notice that 0 < (
1

2
)

1

𝑛 < 1 ).    

 

Thus lim
𝑛→∞

sup
𝑥∈𝐼

|𝑥𝑛 − 0| ≥
1

2
  ⟹ lim

𝑛→∞
sup
𝑥∈𝐼

|𝑥𝑛 − 0| ≠ 0 .  

 

Thus {𝑥𝑛} does not converge uniformly to 𝑓(𝑥) = 0 on 0 ≤ 𝑥 < 1 or 0 ≤ 𝑥 ≤ 1. 

 

Notice that if  𝐼 = [0,
7

8
]   (or [0,1 − 𝛼], 0 < 𝛼 ≤ 1),  {𝑥𝑛} would converge 

uniformly to 𝑓(𝑥) = 0.  In this case we would just note that:   |
𝑙𝑛𝜖

ln|𝑥|
| ≤ |

𝑙𝑛𝜖

ln|
7

8
|
|         

so we could choose 𝑁 > max (
𝑙𝑛𝜖

ln|7
8|

, 0)   which does not depend on 𝑥.                                                      

 

Ex.  Show that the sequence of functions 𝑓𝑛(𝑥) =
sin(𝑛2𝑥)

𝑛
    converges 

uniformly to 𝑓(𝑥) = 0 for 𝐼 = ℝ.  However, show that 𝑓𝑛′(𝑥) does not converge 

even pointwise to 𝑓′(𝑥). 

 

 To show that the sequence of functions 𝑓𝑛(𝑥) =
sin(𝑛2𝑥)

𝑛
    converges uniformly 

to 𝑓(𝑥) = 0 for 𝐼 = ℝ, we must show:  

 

for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ (where 𝑁 doesn’t depend on 𝑥), such that for 

all 𝑥 ∈ ℝ,  if 𝑛 ≥ 𝑁 then |
sin(𝑛2𝑥)

𝑛
− 0| < 𝜖. 
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As usual, we start with the epsilon statement: 

|
sin(𝑛2𝑥)

𝑛
− 0| = |

sin(𝑛2𝑥)

𝑛
| ≤

1

𝑛
  

So if we can force 
1

𝑛
< 𝜖   we’re almost done, because |

sin(𝑛2𝑥)

𝑛
− 0| ≤ 

1

𝑛
 .   

But   
1

𝑛
< 𝜖 is equivalent to   𝑛 >

1

𝜖
 .   

 

So choose 𝑁 >
1

𝜖
   (notice that 𝑁 depends only on 𝜖 and not 𝑥 ∈ ℝ). 

If  n ≥ 𝑁 >
1

𝜖
 we have: 

|
sin(𝑛2𝑥)

𝑛
− 0| = |

sin(𝑛2𝑥)

𝑛
| ≤

1

𝑛
<

1

1
𝜖

= 𝜖. 

Thus we have shown that 𝑓𝑛(𝑥) =
sin(𝑛2𝑥)

𝑛
    converges uniformly to 𝑓(𝑥) = 0 

for 𝐼 = ℝ. 

   

Now notice that 𝑓𝑛
′(𝑥) =

𝑛2cos (𝑛2𝑥)

𝑛
= 𝑛𝑐𝑜𝑠(𝑛2𝑥)    and  𝑓′(𝑥) = 0.  

 

However, for no value of 𝑥 is lim
𝑛→∞

𝑓𝑛
′(𝑥) = 0, in fact the lim

𝑛→∞
𝑓𝑛

′(𝑥) does not 

exist (at least it’s not a finite number).    

 

For example, when 𝑥 = 0,  

lim
𝑛→∞

𝑓𝑛
′(𝑥) = lim

𝑛→∞
𝑛 = ∞.   
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Ex.  Determine the pointwise limit on the given interval and the intervals on which 

the convergence is uniform for the following sequences of functions. 

a.     𝑓𝑛(𝑥) =
𝑥

1+𝑛𝑥2 ;      𝑥 ∈ ℝ.      

b.     𝑓𝑛(𝑥) =
√𝑛𝑥

1+𝑛𝑥2 ;      𝑥 ∈ ℝ.      

 

a. 𝑓(𝑥) = lim
                    𝑛→∞

𝑓𝑛(𝑥) = lim
𝑛→∞

𝑥

1+𝑛𝑥2 = 0 for all 𝑥 ∈ ℝ (pointwise 

convergence) 

To test uniform convergence let’s find the maximum value of |𝑓𝑛(𝑥)| on ℝ. 

𝑓𝑛
′(𝑥) =

(1+𝑛𝑥2)(1)−𝑥(2𝑛𝑥)

(1+𝑛𝑥2)
2 =

1−𝑛𝑥2

(1+𝑛𝑥2)
2 .   

Setting 𝑓𝑛
′(𝑥) = 0 and solving we get  𝑥 = ±√

1

𝑛
 .  

 

By checking the sign of 𝑓𝑛
′(𝑥) and using lim

𝑥→±∞
𝑓𝑛(𝑥) = 0, we see that: 

𝑥 = −√
1

𝑛
  yields the minimum value of 𝑓𝑛(𝑥). 

𝑥 = √
1

𝑛
  yields the maximum value of 𝑓𝑛(𝑥). 

 

 

 

. 

 

 

     

√
1

𝑛
 

(√
1

𝑛
 , 

1

2√𝑛
) 

−√
1

𝑛
 

(−√
1

𝑛
 ,− 

1

2√𝑛
) 

 

𝑓𝑛(𝑥) =
𝑥

1 + 𝑛𝑥2
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      𝑓𝑛 (−√
1

𝑛
) =

−1

2√𝑛
 ;            𝑓𝑛 (√

1

𝑛
) =

1

2√𝑛
 .     

           So sup
𝑥∈ℝ

|𝑓𝑛(𝑥)| =
1

2√𝑛
 ; which goes to 0 as 𝑛 goes to ∞. 

          Thus 𝑓𝑛(𝑥) → 𝑓(𝑥) = 0  uniformly for all 𝑥 ∈ ℝ. 

 

 

b. 𝑓(𝑥) = lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑛→∞

√𝑛𝑥

1+𝑛𝑥2                                           

         = lim
𝑛→∞

√𝑛𝑥

√𝑛(
1

√𝑛
+√𝑛𝑥2)

= 0  for all 𝑥 ∈ ℝ, (pointwise convergence).  

 

 𝑓𝑛
′(𝑥) = √𝑛(

1−𝑛𝑥2

(1+𝑛𝑥2)2) = 0,    when 𝑥 = ±√
1

𝑛
 .  

 

           Once again the max value is at 𝑥 = √
1

𝑛
  and the min value at 𝑥 = −√

1

𝑛
  . 

 

 

 

 

 

 

 

 

     

 

                                                     𝑓𝑛 (−√
1

𝑛
) =

−1

2
 ;       𝑓𝑛 (√

1

𝑛
) =

1

2
 .  

√
1

𝑛
 

(√
1

𝑛
 ,

1

2
) 

−√
1

𝑛
 

(−√
1

𝑛
 , −

1

2
) 

𝑓𝑛(𝑥) =
√𝑛𝑥

1 + 𝑛𝑥2
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                 Notice that     lim
𝑛→∞

sup
𝑥∈ℝ

|𝑓𝑛(𝑥)| =
1

2
≠ 0 . 

 

                  So 𝑓𝑛(𝑥) does not converge uniformly to 𝑓(𝑥) = 0 for all 𝑥 ∈ ℝ. 

 

                  So where does 𝑓𝑛(𝑥) → 𝑓(𝑥) = 0  uniformly? 

                The problem is that |𝑓𝑛(𝑥)| takes a maximum value of 
1

2
 at 

                𝑥 = ±√
1

𝑛
  for all 𝑛. 

 

However, if we remove any open interval around 𝑥 = 0, eventually 𝑥 = ±√
1

𝑛
 

will move into that open interval. 

 

 

 

 

 

 

 

 

 

 

 

 

( −𝑎 ) 𝑎 



12 
 

 

Claim:  𝑓𝑛(𝑥) → 𝑓(𝑥) = 0  uniformly on any set of the form                             

{𝑥 ≤ −𝑎} ∪ {𝑥 ≥ 𝑎},  𝑎 > 0  (i.e. for |𝑥| ≥ 𝑎).                                                     

Note: we could also use {𝑥 ≤ −𝑎} ∪ {𝑥 ≥ 𝑏},  𝑎, 𝑏 > 0 .  

 

We must show that given any 𝜖 > 0, there exists an 𝑁 ∈ ℤ+such that if 𝑛 ≥ 𝑁 

and |𝑥| ≥ 𝑎 > 0 then    |
√𝑛𝑥

1+𝑛𝑥2 − 0| < 𝜖. 

 

|
√𝑛𝑥

1+𝑛𝑥2 − 0| = |
√𝑛𝑥

1+𝑛𝑥2| = 
|𝑥|√𝑛

|𝑥|(
1

|𝑥|
+𝑛|𝑥|)

=
√𝑛

(
1

|𝑥|
+𝑛|𝑥|)

      

                                         <
√𝑛

𝑛𝑎
=

1

𝑎√𝑛
< 𝜖     

                                𝑎√𝑛 >
1

𝜖
     

                                   √𝑛 >
1

𝑎𝜖
   

                                      𝑛 > 
1

𝑎2𝜖2 .     

 

So if we choose 𝑁 >
1

𝑎2𝜖2 (notice that 𝑁 is independent of 𝑥) we get: 

           𝑛 ≥ 𝑁 >
1

𝑎2𝜖2  

               √𝑛 > 
1

𝑎𝜖
 

             𝑎√𝑛 > 
1

𝜖
 

   
√𝑛

𝑛𝑎
=

1

𝑎√𝑛
< 𝜖.      
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 So we have: 

|
√𝑛𝑥

1+𝑛𝑥2 − 0| = |
√𝑛𝑥

1+𝑛𝑥2| = 
|𝑥|√𝑛

|𝑥|(
1

|𝑥|
+𝑛|𝑥|)

=
√𝑛

(
1

|𝑥|
+𝑛|𝑥|)

 <
√𝑛

𝑛𝑎
< 𝜖.   

 

Thus    𝑓𝑛(𝑥) → 𝑓(𝑥) = 0  uniformly on any set of the form                              

{𝑥 ≤ −𝑎} ∪ {𝑥 ≥ 𝑎},  𝑎 > 0  (i.e. for |𝑥| ≥ 𝑎). 

 

A second way to see that 𝑓𝑛(𝑥) → 𝑓(𝑥) = 0  uniformly on any set of the form  

𝑆 = {𝑥 ≤ −𝑎} ∪ {𝑥 ≥ 𝑎},  𝑎 > 0, is to show that lim
𝑛→∞

sup
𝑥∈𝑆

|𝑓𝑛(𝑥) − 0| = 0. 

Since 𝑓𝑛
′(𝑥) = √𝑛(

1−𝑛𝑥2

(1+𝑛𝑥2)2) = 0  at 𝑥 = ±√
1

𝑛
  we have:    

 

      sign of 𝑓𝑛
′(𝑥)        ______−_______|________+_________|_____−____  . 

                                                       −√
1

𝑛
                                  √

1

𝑛
  

 

Given any positive number 𝑎 > 0, for 𝑛 sufficiently large,   −𝑎 < −√
1

𝑛
< √

1

𝑛
< 𝑎. 

For these values of 𝑛, on the set 𝑆, the absolute maximum of 𝑓𝑛(𝑥) occurs at     

𝑥 = 𝑎 since 𝑓𝑛
′(𝑥) < 0 and 𝑓𝑛(𝑥) > 0  for 𝑥 > 𝑎, and the absolute minimum of 

𝑓𝑛(𝑥) occurs at 𝑥 = −𝑎 since 𝑓𝑛
′(𝑥) < 0 and 𝑓𝑛(𝑥) < 0  for 𝑥 < −𝑎. 

Now notice that: 

      sup
𝑥∈𝑆

𝑓𝑛(𝑥) = 𝑓𝑛(𝑎) =
√𝑛𝑎

1+𝑛𝑎2   

     inf
𝑥∈𝑆

𝑓𝑛(𝑥) = 𝑓𝑛(−𝑎) = −
√𝑛𝑎

1+𝑛𝑎2 . 
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Thus we have: 

      sup
𝑥∈𝑆

|𝑓𝑛(𝑥)| =
√𝑛𝑎

1+𝑛𝑎2 . 

Now we can say: 

      0 ≤ sup
           𝑥∈𝑆

|𝑓𝑛(𝑥)| =
√𝑛𝑎

1+𝑛𝑎2 ≤
√𝑛𝑎

𝑛𝑎2 =
1

√𝑛𝑎
 .    

Thus we have by the squeeze theorem: 

     lim
𝑛→∞

sup
𝑥∈𝑆

|𝑓𝑛(𝑥) − 0| = 0.       

 

  

Theorem:  If 𝑓𝑛(𝑥) converges to 𝑓(𝑥) uniformly on an interval 𝐼 ⊆ ℝ, and 𝑓𝑛(𝑥) is 

continuous on 𝐼 for all 𝑛, then 𝑓(𝑥) is continuous on 𝐼. 

 

Proof: we must show that given any point 𝑎 ∈ 𝐼, that for every 𝜖 > 0 there exists 

a 𝛿 > 0 such that if |𝑥 − 𝑎| < 𝛿, 𝑥 ∈ 𝐼,  then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜖  (here the 𝛿 can 

depend on the point “a”). 

Let’s start by choosing any point 𝑎 ∈ 𝐼, and fixing any 𝜖 > 0. 

By the triangle inequality we know: 

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓(𝑎)|  

 

Using the triangle inequality again, but on the 2nd term on the RHS we get: 

|𝑓𝑛(𝑥) − 𝑓(𝑎)| ≤ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|   

 

Putting these 2 triangle inequalities together we get: 

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|.  
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Now let’s show that each one of the terms on the RHS can be made less than 
𝜖

3
 .  

 

Since 𝑓𝑛(𝑥) converges to 𝑓(𝑥) uniformly we know there exists a 𝑁 ∈ ℤ+ such that 

if 𝑛 ≥ 𝑁 then |𝑓𝑛(𝑥) − 𝑓(𝑥)| <  
𝜖

3
    for any 𝑥 ∈ 𝐼.  

 

Thus the first and the third terms on the RHS can be made less than 
𝜖

3
 by choosing 

any 𝑛 ≥ 𝑁, using 𝑁 in the statement above.  

 

Since 𝑓𝑛(𝑥) is continuous on 𝐼 we know that given any 
𝜖

3
> 0 there exists a 𝛿 > 0 

such that if |𝑥 − 𝑎| < 𝛿, 𝑥 ∈ 𝐼,  then |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| <
𝜖

3
  .  

 

Using this 𝛿 we have: 

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|                                  

                            <  
𝜖

3
+ 

𝜖

3
+

𝜖

3
= 𝜖 

Thus 𝑓(𝑥) is continuous on 𝐼. 


