Uniform Convergence of Fourier Series

Up to now, we have talked mostly about L,-convergence of Fourier series.
When does S, (f) converge uniformly to f?

Before we answer this question we need another form of the Cauchy-Schwarz
inequality. To do this we first want to consider the set of all real sequences,

x = {xp}, such that Y771 |x, [P < 00 for 1 < p < 00. We call this set £,,.

In fact, fp is a vector space under coordinatewise addition and we can define a
norm on this vector space by:

1
lxll, = Cn=1lxn|P)?  where x is a sequence in £,,

To prove uniform convergence of a Fourier series to a function f(x) under the
appropriate conditions we will need the following form of the Cauchy-Schwarz

inequality for £,.
Cauchy-Schwarz inequality: X721 |x;yi| < |lxll2[1yll2

x,y € £, (Note: )}721 X;; is a dot product for £,)



Proof:
Let'swrite < X,y > = )72 X; V.
Then < x,x > = Y2, x7 = ||x||3.
If t € R, then:
O<|x+tylls=<x+ty,x+ty>
=<xx>+2t<x,y>+t2<y,y>
= |Ixll3 + 2t <x,y > +t2|lyll5.

This is a quadratic in t that’s nonnegative so:
At* +Bt+C =0
B?2 —4AC <0,
Or in ths case,
(2 <xy>)?—4lxll3llyllf <0
<x,y >*< |Ixl3llyll3

1< x,y >| < |Ix]l2]l¥ll2
2 1
12 %yl < (X2 %7 )2 T2 (v)?)z .
The same holds for:

X = (|x1|; |X2|, |x3|; )

y=(|3’1|;|3’2|;|J’3|»---); SO
1 1
Y2 xllyil < (B2, x2)2(X52, y2)?

1 1
Yicqlxiyil < (Z?‘;1xi2)2(2§0=1 yiz)z :



Theorem: Let f be a continuous function on [—1t, ] with

f(=m) = f(m)
and suppose f has a bounded, piecewise continuous derivative on
[—m, ]. Then the Fourier series for f converges uniformly to f on [—T, 1T].

Proof: Since f”(x) is piecewise continuous, we can use integration by
parts to compare the Fourier coefficients of f'(x) with those of f (x).

fl(x) = aTOI + Y r-1(ay cos kx + by, sin kx)
flx) = % + Y -1 (ay cos kx + by, sin kx)
For k = 1 we have:
’ 1 ,
a = ;f_nf (x) coskx dx

Let u = coskx v=f(x)

du = —ksinkx dx dv = f'(x) dx

a, = %[(COS kx) f(x)|", + k f_nn (sin kx) f(x)dx]

_1 [(cos kr) f(mr) — cos(—km) f(—m) + k ffn (sin kx) f(x)dx]
f(—m) = f(m) and cos(—km) = cos km, so

S

aj %ffnf(x) sinkx dx = kby,.

ay = /7 f (Odx =1 (f(m) = f(=m)) = 0.



Similarly:
bl = % [T f'(x)sinkx dx

Let u = sin kx v=f(x)

du = k cos kx dx dv = f'(x) dx

b;, = %[(sin kx) fO)|"r — k ffn f(x) cos kx dx]
= —%f_nn f(x) coskx dx = —kay

We know if g € R[—m, ], then by Parseval’s identity:

c2 o 1 2
T+ X+ dp = (9()) dx <

where cy, dj, are the Fourier coefficients for g. So we can write:

Zlcio=1(a;c)2 =Yke1 kzbl% < ®

and

Y1 (bp)? =Y k?af < oo .

Now we have:

Sealal = S5 [(laD - 2] < (S k2ad)2 (S 5 ) <o

by the Cauchy-Schwarz inequality.



Similarly,

1
2

Sialbel = S [ (elbil) 2] < (S k2b2)2 (S5 5 ) < oo

We also know:
|a; cos kx| < |ay|
|bk SinXl < |bk|

Thus, |ag cos kx + by sin kx| < |ay| + |bx| = My, forall x € [—mr, 7T].

So by the Weierstrass M-test, since:

Yre1ag| + |bg]) < oo

Yireq(ay cos kx + by sin kx) converges uniformly on [—, 7].

a .
Hence 70 + Y (ay cos kx + by, sin kx) converges uniformly on [—, 7r].

Thus, f(x) = % + Y1 (ay cos kx + by sin kx) for x € [—m, 7]

(i.e. the Fourier series converges uniformly on [—1t, T| and hence pointwise on
[—m, m]).



Theorem: Termwise Differentiation of Fourier Series

Suppose f and f” are continuous on [—, 7] with f(—1) = f () and
f'(—m) = f'(m) and suppose that f' has a piecewise continuous derivative on
[—m, ]. Then the Fourier series for f” is

f'(x) = Yr=1(=kay sin kx + kb, cos kx)
This is the termwise differentiation of the Fourier series of f.

Proof: We know from the previous theorem that the Fourier series of f'(x)
converges uniformly to f'(x) on [—m, ]. We just need to show that the Fourier
coefficients of f'(x) are —kay, and kby,.

If f'(x) = 02_0 + Y req1(ck cos kx + dj, sin kx)
then, ¢ =+ [T f'(¥) dx = 2 (f(m) = f(-m) = 0

1 L
Cx = Ef—nf (x) cos kx dx.
As we saw in the previous proof by integrating by parts we get:

1 .
cx = kby and d;, = Effnf’(x) sinkx dx = —kay
which is exactly what we get from term by term differentiation of the

Fourier series for f(x).



Ex. Solve the differential equation x''(t) + 4x(t) = F(t), where
_T_ 4y

(F (t) is the Fourier series for F(t) = |t|, - <t < 7, and
F(t + 2nm) = F(t)).

cos[(2k—1)t]
(2k—1)2

To solve this differential equation we first solve the homogeneous
equation: x'' + 4x = 0.

The general solution to the homogeneous equation is:

xp(t) = Acos 2t + Bsin2t, A,B € R.

The general solution to x''(t) + 4x(t) = F(t) is given by:
x(t) = xp(t) + x,(t)

where xp(t) is a particular solution for x"'(t) + 4x(t) = F(t).

To find a particular solution for:

cos[(2k—1)t]
(2k—1)2

T 4
x"(t) +4x(t) == — = Xy
2 T
we take:
a .
xp(t) = 70 + Y= q1(ay cos kt + by, sin kt)
and take its derivatives and substitute into the differential equation above.
xp'(t) = Yg=1(—kay sinkt + kby cos kt)

x,"'(t) = Yp=1(—k*ay cos kt — k?by, sin kt)



Yo (—k?ay cos kt — k*by, sin kt) +

cos[(2k—1)t]
(2k—-1)2

0o i r
4 (% + Yr=1(ay cos kt + b, sin kt)) =3 ; Lk=1

4a0 + 3% (a,(4 — k*) cos kt + b, (4 — kz) sin kt)

_n_ 4 cos[(2k—1)t]
- Zk L (2k-1)2

4a [
So TO =3 and a =§, b, = 0 forall k and a,, = 0 forall k.

Q1 (4= 2k = 1)2) == (=)

(2k—1)2

4 1

Aok-1 =~ [(zk_1)2[4—(2k—1)2]]
4 cos[(2k—1)t]
xp(1) =2 — =%, (k=12 [4—(2k—1)7]

cos[(2k—-1)t] =
(2k—1)2 is:

T 4
So the general solution to x''(t) + 4x(t) = e ;ZIOCO:l

x(t) = xp(t) + x,(t)

cos[(2k—-1)t]
= A cos 2t + B sin 2t + - — _Zk | G e (zk-D7]




