Fourier Series: L_2 Convergence and Parseval's Identity

Suppose $f \in R[-\pi, \pi]$, then $f^2 \in R[-\pi, \pi]$ as we saw earlier and:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx \le \frac{1}{\pi} \|f\|_{\infty}^2 \int_{-\pi}^{\pi} 1 dx = 2 \|f\|_{\infty}^2 < \infty.$$

Let's let
$$T(x) = \frac{c_0}{2} + \sum_{k=1}^{n} (c_k \cos kx + d_k \sin kx).$$

For what values of c_0 , c_k and d_k , $k=1,\ldots,n$, is $\|f-T\|_2^2=\frac{1}{\pi}\int_{-\pi}^\pi (f(x)-T(x))^2\ dx \text{ minimized?}$

Let's show that for all $n, T(x) = S_n(f)(x)$, where:

$$S_n(f)(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx)$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

minimizes
$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x) - T(x))^2 dx = ||f - T||_2^2$$
.

Notice that:

$$\int_{-\pi}^{\pi} (f - T)^2 dx = \int_{-\pi}^{\pi} f^2 dx - 2 \int_{-\pi}^{\pi} f T dx + \int_{-\pi}^{\pi} T^2 dx$$

$$\int_{-\pi}^{\pi} f \, T \, dx = \int_{-\pi}^{\pi} f(x) \left(\frac{c_0}{2} + \sum_{k=1}^{n} (c_k \cos kx + d_k \sin kx) \right) \, dx$$

$$= \frac{c_0}{2} \int_{-\pi}^{\pi} f(x) \, dx + \sum_{k=1}^{n} \left(c_k \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right)$$

$$+ \sum_{k=1}^{n} \left(d_k \int_{-\pi}^{\pi} f(x) \sin kx \, dx \right)$$

$$= \pi \left[\frac{c_0 a_0}{2} + \sum_{k=1}^{n} (c_k a_k + d_k b_k) \right]$$

$$\int_{-\pi}^{\pi} T^2 dx
= \int_{-\pi}^{\pi} \left(\frac{c_0}{2} + \sum_{k=1}^{n} (c_k \cos kx + d_k \sin kx)\right)
\left(\frac{c_0}{2} + \sum_{j=1}^{n} (c_j \cos jx + d_j \sin jx)\right) dx .$$

Since $1, \cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$ are orthogonal and:

$$\int_{-\pi}^{\pi} \cos^2 kx \ dx = \int_{-\pi}^{\pi} \sin^2 kx \ dx = \pi \ , \qquad \int_{-\pi}^{\pi} 1 \ dx = 2\pi$$

we get:

$$\int_{-\pi}^{\pi} T^2 dx = \pi \left[\frac{c_0^2}{2} + \sum_{k=1}^{n} (c_k^2 + d_k^2) \right].$$

So we have:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f - T)^2 dx =$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - 2 \left[\frac{c_0 a_0}{2} + \sum_{k=1}^{n} (c_k a_k + d_k b_k) \right] + \left[\frac{c_0^2}{2} + \sum_{k=1}^{n} (c_k^2 + d_k^2) \right]$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f - T)^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx + \frac{c_0^2 - 2a_0 c_0}{2} + \sum_{k=1}^{n} [(c_k^2 + d_k^2) - 2(c_k a_k + d_k b_k)].$$

Now notice that:

$$c_k^2 - 2c_k a_k = (c_k - a_k)^2 - a_k^2$$
$$d_k^2 - 2d_k b_k = (d_k - b_k)^2 - b_k^2.$$

Thus we have:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f - T)^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx + \frac{(c_0 - a_0)^2}{2} + \sum_{k=1}^{n} [(c_k - a_k)^2 + (d_k - b_k)^2] - \frac{a_0^2}{2} - \sum_{k=1}^{n} (a_k^2 + b_k^2).$$

Recall that we want to know how to choose c_{0} , c_{k} , d_{k} in

$$T(x) = \frac{c_0}{2} + \sum_{k=1}^{n} (c_k \cos kx + d_k \sin kx) \text{ to minimize } \frac{1}{\pi} \int_{-\pi}^{\pi} (f - T)^2 dx.$$

Clearly, by looking at the RHS of the expression for $\frac{1}{\pi}\int_{-\pi}^{\pi}(f-T)^2~dx$ we see that $c_k=a_k$ and $d_k=b_k$ minimizes the integral. That is,

$$T(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx) = S_n(f)(x)$$

and the minimum value for the integral is:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} [f - S_n(f)]^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - \frac{1}{\pi} \int_{-\pi}^{\pi} (S_n(f)(x))^2 dx.$$

So if we think of $R[-\pi,\pi]$ with the L_2 -norm then of all the possible trigonometric polynomials of degree $\leq n$ in $R[-\pi,\pi]$:

$$\inf_{T \in T_n} \|f - T\|_2 = \|f - S_n(f)\|_2$$
and
$$0 \le \|f - S_n(f)\|_2^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - \frac{1}{\pi} \int_{-\pi}^{\pi} (S_n(f)(x))^2 dx$$

$$= \|f\|_2^2 - \|S_n(f)\|_2^2.$$

Since
$$\|f\|_2^2 - \|S_n(f)\|_2^2 \ge 0$$
 we have:
$$\|S_n(f)\|_2^2 \le \|f\|_2^2$$
 or
$$\|S_n(f)\|_2 \le \|f\|_2 \quad \text{(Bessel's inequality)}.$$

Now notice that for all n:

$$||S_n(f)||_2^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} (S_n(f)(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \le ||f||_2^2.$$

Thus, if $f \in R[-\pi, \pi]$, its Fourier coefficients are square summable and

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx.$$

In particular: $\lim_{k\to\infty}a_k^2=\lim_{k\to\infty}b_k^2=0$; this is a necessary condition for an infinite sum to converge. This then implies that $\lim_{k\to\infty}a_k=\lim_{k\to\infty}b_k=0$.

So the Fourier coefficients of f must tend to 0 as k goes to ∞ , i.e.

$$\lim_{k \to \infty} a_k = \lim_{n \to \infty} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = 0$$

$$\lim_{k\to\infty} b_k = \lim_{n\to\infty} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = 0.$$

This is known as the Riemann lemma (we showed the first part of this earlier by approximating f(x) by step functions).

By Weierstrass' $2^{\rm nd}$ approximation theorem, we know that if $f \in C^{2\pi}$ then given any $\epsilon > 0$ there is a trig polynomial $T^* \in T_m$, for some $m \in \mathbb{Z}^+$, such that $\|f - T^*\|_{\infty} < \epsilon$.

Let's use this fact to show that if $f \in C^{2\pi}$ then $S_n(f) \to f$ in the L_2 -norm. First notice:

$$||f||_2 = \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx} \le \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} ||f||_{\infty}^2 dx} = (\sqrt{2}) ||f||_{\infty}.$$

So we have for $n \ge m$:

$$||f - S_n(f)||_2 = \inf_{T \in T_n} ||f - T||_2 \le \sqrt{2} \inf_{T \in T_n} ||f - T||_{\infty} < \epsilon \sqrt{2}$$

Since $T^* \in T_m \subseteq T_n$ and $n \ge m$, $S_n(f) \to f$ in the L_2 -norm if $f \in C^{2\pi}$.

Now we want to extend this result to $f \in R[-\pi, \pi]$.

That is, if $f \in R[-\pi,\pi]$, then $\lim_{n\to\infty} \|f-S_n(f)\|_2=0$, (i.e. $S_n(f)$ converges to f in the L_2 -norm).

First, notice that if $f, g \in R[-\pi, \pi]$ then $S_n(f + g) = S_n(f) + S_n(g)$.

That is, the Fourier coefficients of f+g are the sum of the Fourier coefficients of f and g. For example:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x) + g(x)) \cos kx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx + \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos kx \, dx.$$

In fact, for any $\alpha, \beta \in \mathbb{R}$; $S_n(\alpha f + \beta g) = \alpha S_n(f) + \beta S_n(g)$.

Now suppose $f \in R[-\pi,\pi]$, we know we can find a continuous function $g \in C[-\pi,\pi]$, such that:

$$\int_{-\pi}^{\pi} |f - g| \ dx < \epsilon \qquad \text{(See The Space } R_{\alpha}[a, b]\text{)}.$$

The same approach will allow us to find a continuous function $g \in C[-\pi, \pi]$ such that:

$$\sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} |f - g|^2 \ dx} < \epsilon.$$

That is, $||f - g||_2 < \epsilon$.

In fact, we can find an $h \in C^{2\pi}$ with:

$$\sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} |f - h|^2} \ dx < \epsilon$$

or $\|f-h\|_2<\epsilon$. We can see this since for any $\delta>0$ we can let $h=g\in C[-\pi,\pi]$ on $[-\pi,\pi-\delta]$, (where $\|f-g\|_2<\epsilon$), and then let h be linear between $g(\pi-\delta)$ and $h(\pi)=h(-\pi)$.

And if we can do this for any $\epsilon>0$, we can do it for $\frac{\epsilon}{3}$. So we can find an $h\in C^{2\pi}$ with:

$$||f - h||_2 = \left(\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x) - h(x)|^2 dx\right)^{\frac{1}{2}} < \frac{\epsilon}{3}.$$

Now by the triangle inequality we have:

$$||f - S_n(f)||_2 \le ||f - h||_2 + ||h - S_n(f)||_2$$

Applying the triangle inequality again to the last term on the RHS we get:

$$||h - S_n(f)||_2 \le ||h - S_n(h)||_2 + ||S_n(h) - S_n(f)||_2$$
$$= ||h - S_n(h)||_2 + ||S_n(h - f)||_2.$$

And thus,

$$||f - S_n(f)||_2 \le ||f - h||_2 + ||h - S_n(h)||_2 + ||S_n(h - f)||_2$$

From Bessel's inequality:

$$||S_n(h-f)||_2 \le ||h-f||_2 < \frac{\epsilon}{3}.$$

And since $h \in \mathcal{C}^{2\pi}$ for any $\epsilon > 0$, there exists an N such that $n \geq N$ implies

$$||h - S_n(h)||_2 < \frac{\epsilon}{3}.$$

So we have: $||f - S_n(f)||_2 < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$.

Thus, if $f \in R[-\pi,\pi]$ then its Fourier series converges to f in the L_2 -norm.

Parseval's Identity:

If
$$f \in R[-\pi,\pi]$$
, then $\lim_{n\to\infty} ||f - S_n(f)||_2 = 0$.

This implies that $\lim_{n\to\infty} ||f - S_n(f)||_2^2 = 0$.

But we saw earlier that $||f - S_n(f)||_2^2 = ||f||_2^2 - ||S_n(f)||_2^2$.

So we have: $0 = \lim_{n \to \infty} \|f - S_n(f)\|_2^2 = \lim_{n \to \infty} (\|f\|_2^2 - \|S_n(f)\|_2^2).$

Thus, $||f||_2^2 = \lim_{n \to \infty} ||S_n(f)||_2^2$

which gives us Parseval's identity:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2).$$

Parseval's identity tells us that if f, $g \in C^{2\pi}$ have the same Fourier coefficients (this means the Fourier coefficients of f-g are all 0) then f must equal g.

Since if

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x) - g(x)) \cos kx \, dx = 0$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x) - g(x)) \sin kx \, dx = 0$$

for all $k \in \mathbb{Z}^+ \cup \{0\}$ then by Parseval's identity:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x) - g(x))^2 dx = 0.$$

But $(f(x)-g(x))^2$ is a continuous function on $[-\pi,\pi]$ and $(f(x)-g(x))^2\geq 0$.

Thus
$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x) - g(x))^2 dx = 0$$
 implies $f(x) = g(x)$.

In contrast, if $f(x) \in \mathcal{C}^{\infty}[-\pi,\pi]$ and all of the Taylor series coefficients are 0, we can't conclude f(x) = 0 on $[-\pi,\pi]$. For example:

$$f(x) = e^{-\frac{1}{x}}$$
 if $x > 0$ and $f(x) = 0$ if $x \le 0$.

In particular, if a Fourier series for $f \in \mathcal{C}^{2\pi}$ converges uniformly, it must converge uniformly to f(x) (and hence pointwise to f(x)). This is true because if the Fourier series converges uniformly it must converge to an element $g \in \mathcal{C}^{2\pi}$ (since each $S_n(f) \in \mathcal{C}^{2\pi}$). But f and g have the same Fourier series and they are both in $\mathcal{C}^{2\pi}$ so f(x) = g(x).

Ex. What does Parseval's identity say about the Fourier series for f(x) = |x|; $-\pi \le x \le \pi$?

Earlier we found the Fourier series for f(x) = |x| to be:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos[(2k-1)x]}{(2k-1)^2}.$$

We now know that since $f(x) \in C^{2\pi}$, and the Fourier series of f converges uniformly on $[-\pi, \pi]$ (we saw this earlier with the Weierstrass M test), the Fourier series converges pointwise and uniformly on $[-\pi, \pi]$ to f(x).

Parseval's identity says:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \qquad (*)$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} |x|^2 dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{\pi} \frac{x^3}{3} \Big|_{-\pi}^{\pi}$$
$$= \frac{1}{\pi} \left(\frac{2\pi^3}{3} \right) = \frac{2\pi^2}{3}$$

$$\frac{a_0}{2} = \frac{\pi}{2} \implies \frac{a_0^2}{2} = \frac{\pi^2}{2}$$

$$a_{2k-1} = -\frac{4}{\pi} \left(\frac{1}{(2k-1)^2} \right)$$
; $a_{2k} = 0$ if $k \neq 0$

Now substituting into (*) we get:

$$\frac{2\pi^2}{3} = \frac{\pi^2}{2} + \frac{16}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^4}$$

$$\frac{\pi^2}{6} = \frac{16}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^4}$$

$$\frac{\pi^4}{96} = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^4} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \cdots$$

Note: If f(x) has a period of 2π but is defined on an interval other than $[-\pi, \pi]$, say $[c, c+2\pi]$, we have already seen that you can compute the Fourier coefficients by:

$$a_k = \frac{1}{\pi} \int_c^{c+2\pi} f(x) \cos kx \, dx$$
$$b_k = \frac{1}{\pi} \int_c^{c+2\pi} f(x) \sin kx \, dx$$

In this situation, Parseval's identity becomes:

$$\frac{1}{\pi} \int_{c}^{c+2\pi} (f(x))^{2} dx = \frac{a_{0}^{2}}{2} + \sum_{k=1}^{\infty} (a_{k}^{2} + b_{k}^{2}).$$

In general, if f(x) has a period of 2L then Parseval's identity becomes:

$$\frac{1}{L} \int_{c}^{c+2L} (f(x))^{2} dx = \frac{a_{0}^{2}}{2} + \sum_{k=1}^{\infty} (a_{k}^{2} + b_{k}^{2})$$

where:
$$a_k = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{k\pi x}{L} dx$$
$$b_k = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{k\pi x}{L} dx.$$