The Riemann Integral

When does a Riemann -Stieltjes integral reduce to a Riemann integral? In particular,
when is

[} f da =[] f()a' (x)dx?

Theorem: Suppose « is increasing and that &’ exists and is a (bounded)
Riemann integrable function on [a, b]. Then given a
bounded function, f on [a, b], we have f € R,[a, b] if, and only if,
fa' € R[a, b]. In either case,

[P fda =[] fe)a'(x)dx

Proof: Let € > 0 be given and let’s show that there exists a partition, P, such
that

U (f, P) —U(fa',P)| < |Ifllce (%)
and

ILe(f,P) =L(fa',P)| < llfllce  (%%)

By the triangle inequality this will show that f € R, [a, b] if, and

onlyif, fa' € R[a, b] and if either exists then:

[} f da =[] f) (x) dx.



First, let’s see why this is true.

Suppose f € R, [a, b]. Then there exists a partition P such that

Ua(f,P)—La(f,P) <e€.

Then by the triangle inequality we have:
|U(fa’,P) — L(fa',P)| < [U(fa',P) — Uy(f, P)I
+|Ue(f, P) — Lo (f, P)| + |Lo (f, P) — L(fd', P)].

Now using inequalities (*) and (**) we get:
U(fa',P) —L(fa',P)| < lIfllwe + €+ lIfllwe
= C2llIfll + e

Since 2||f||o + 1 is just a constant we have shown that fa' € R][a, b].
A similar argument will show that if fa’ € R[a, b] then f € R,[a, b].

Notice that if both fa’ € R[a, b] and f € R,[a, b] then
[} fda = inf U, (f, P)

[} fa'dx = infU (fa', P).

But U (f,P) —U(fa', P)| < |Ifllco€
= f(ffda = f:fa’dx.



Now let’s show:

Ua(f,P) =U(fa’,P)| < |Ifllwe

Since @' € R|[a, b] we know there exists a partition, P, such that:
U(a',P) — L(a',P) <€

So we can write: LM (a") —mi(a)Ax; < €.

Since a' exists everywhere on [a, b], the mean value theorem guarantees that in

each subinterval [x;_1, X;] there is some point t; € [x;_1, X;] such that:

Aa; = a(x;) — a(x;—1) = (@' (&))(x; — xi-1)

or

Aa; = (a'(t;))Ax;.

Now, if 5; € [x;_1, X;] is any point then:

tla'(s) — ' (t)|Ax; <X M (@) — mi(a)|Ax; < €.

Now let M = sup |f(x)] = ||f]le, then since we know
asx<b

=1 f(s)Aa; = Xty f(spa'(t) Ax;
we get:
1Ziz1 f(s)Aa; — Xy f(spa' (sp) Axl
= [Xic1 f(s)a' () Ax; — Xitq f(s)a’ (sy) Ax;]
= [Xiz1 f(s) (@' (&) — a'(s)Ax;| < Me



So, we can say:
PifG)Aa; <Y f(s)a'(s) Ax; + Me < Y1y Mi(fa') Ax; + Me
or

i f(s) Aa; <U(fa',P) + Me

But this is true for any s; € [x;_1, X;], so it’s true for M;(f).

Thus,
LM (A a; <U(fa',P) + Me
or
Us(f,P) < U(fa',P) + Me
or
U,(f,P) —U(fa',P) < Me.
But:
1Xie1 f(s)Aa; — Xioy f(s)a'(sp)Ax;| < Me
also implies,
?=1 f(spa'(sp)Ax; < ?zlf(si)Aai + Me.
So:

nfG)A (DA ST F(s)Aa; + Me <YM, Mi(f)A a; + Me.



L fGspa'(s)Ax; < Uy(f, P) + Me forall s; € [x;_q,X;]. Thusit’s true
for Mi(far):

n o M;(fa)Ax; < Uy(f,P) + Me

U(fa',P) < U,(f,P) + Me
U(fa',P) — U,(f,P) < Me
thus

|U,(f,P) —U(fa',P)| < Me.

A similar argument gives us:

Lo (f, P) — L(af’,P)| < Me.

Thus, f € Ry[a, b] if, and only if, fa' € R[a, b] and if either exists then:

[, f de = [} fo)a'(x) dx
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Ex. Evaluate fo e* da, where a(x) = x2.

[Prda=[Pfmd@yde;  f)=e¥, a'(x)=2x.
foz e*’da = f02 e** (2x)dx = e*" |2

—et—e0=p%—1.



The probability density function for a normal distribution of mean 0 and standard

x2

deviation 1 is given by (p(x) = \/% e 2. This means that the probability that a
random variable t is less than x is given by:
1 o B
P(x) = Ef_we 2 dt.

If we want to find the expected value of a function, f (x), with respect to a normal
distribution of mean 0 and standard deviation 1, we calculate:

Elf(0)] = f f(x)e T dx.

Since P(x) is differentiable for all x, notice that the expected value of f(x) is just

the Riemann-Stieltjes integral of f(x) where a(x) = P(x) and thus
x2

1 —_
P'(x) = e (by the fundamental theorem of Calculus).

FIFG)] = =, fe™ dx = [, f(x) P,

(I'm “cheating” a bit here since the previous theorem is for a closed and bounded
interval, but one can get around that problem with appropriate definitions).

Now we want to prove the two fundamental theorems of calculus.
Fundamental Theorem of Calculus I:

let f € R[a,b] andfora < x < blet F(x) = f;cf(t) dt. Then, F is

continuous on [a, b]. Furthermore, if f(x) is continuous on [a, b], then

F'(x) = f(x) forall x € [a, b].



Proof: Since f € R[a, b], f is bounded. Suppose |f(t)| < M fora <t < b.
Ifa < x <y <b,then:
FG) = Fl=|[; f©) dt = [, f(©) dt|
= |7 f(®) dt| <My — ).

So to prove F(x) is continuous at X we need to show given any € > 0 there exists a

& > Osuchthatif [y — x| < &, then |F(y) — F(x)| < €

If we take § = — we get:
M
IF(y) = F(x)| < M|y — x| < M§ = M(%) —c.

So, F(x) is continuous at X.

Now assume f is continuous at Xy € [a, b]. Thus, given any € > 0 there exists a
& > 0 suchthatif [t — x| < 6§, then |f(t) — f(x0)] < €.

F(t)—F(Xo) — f(xO)

’ . ! —_ :
Let’s show: F'(x) tllm s

Ift > xq, |t —xo| < & we have,

Rl fG o>|—| [f f(u)du—f""f(u)du]—f (o)
= |+ f (f(u) f(xo>)du|<—f € du
" 0] < e e =

F(t) F(xo)

Thus, F'(xy) = lim = f(xp).
toxg



. FM—-F(x
A similar argument shows F'(x,) = lim Fo=F(x)
t-xg t—xo

- f(xO) fort < xO.

Fundamental Theorem of Calculus II:
If f € R[a, b] and if there is a differentiable function, F, on [a, b] such that
F' = f, then:
b
2 f()dx = Fb) - F@
Proof:

Let € > 0 be given. Since f € R][a, b] there exists a partition,
P = {xy, %1 ..., x,} of [a, D] such that:

U(f,P)—L(f,P) <e

By the mean value theorem on [x;_q, X;], there exists a t; € [x;_1, X;] such that:

F(x;) — F(xij—q) = F'(t;)(x; — x_1)

or

F(Xi) - F(xl-_l) = f(tl-)Axi fori = 1, ., N

Now notice that:

L f@)Ax = (F(xy) — F(x)) + (F(xp) — F(xp)) + -+ + (F(xp) — F(x-1))
= F(b) — F(a).



but

L(f,P) < Xiz1 f(t:) Ax; < U(f, P)

and

L(f,P) < [ f()dx < U(F,P).

But notice that for any real numbers 4 < v; < Band A < v, < B we have:

|lv, —vy| < B — A.

Thus we have:

|, FGodx — B £(t)Ax:| < UCF,P) = L(F, P).

Since U(f,P) — L(f,P) < €, we get:

|2 Fodx — Sy ft)Ax| < €

or

| FG)dx = (F(b) - F(@))| < e.

This is true for all € > 0 so,

12 FGdx = F(b) - F(a).



Ex. Suppose f(x) = 0 for x € [a, b] and f(x) is continuous on [a, b] with
[7 f(x)dx = 0. prove f(x) = 0 on [a, b].

let F(x) = [ f(t)dt, forall x € [a, b].

Since f(t) = 0, F(x) = Oforall x € [a, b].

But 0 = F(b) = [* f(O)dt + [ f(t)dt.

Since f;f(t)dt >0 and f:f(t)dt > 0 forall x € [a, b],

F(x) = [ f(t)dt = Oforall x € [a,b].

By the first fundamental theorem of calculus:
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F'(x) = f(x),but F'(x) = 0 forall x € [a, b] because F(x) is constant.

Thus, f(x) = 0forx € [a, b].

Even though f(t) is not continuous on [a, b] it is still possible

F(x) = f;f(t)dt is differentiable on [a, b].
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Ex. Ontheinterval [—m, T]:
Let f(t) = 2tsin (%) — cos(%) ift #0
=0 ift = 0.

Show that F (x) = foxf(t)dt is differentiable on [—1t, 7T].

For x # O:
F'(x) = f(x) = 2xsin G) — cos(i)

by the first fundamental theorem of Calculus since f (t) is continuous for t # 0.

For x = 0, since F(0) = 0, we have:

_ h2 sin(=
F/(0) = lim PPy P50G) _

h-0 h h-0

by the squeeze theorem.

Thus F(x) = foxf(t)dt is differentiable on [—1T, 7] even though f(t) is

discontinuous at t = 0.
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Ex. However, it can happen that if f(t) is discontinuous on
x . . .
[a, b], then F(x) = fa f(t)dt is not differentiable on [a, b].
For example, let
f®)=1 ifl1<t<2
=0 if0<t<1.

Then we have:
Fx) = [ f(dt =x—1 ifl<x<2
=0 if0<x<1

which is not differentiable at x = 1.

y=f®
1 1 y=F(x).




