Trigonometric Polynomials

Def. A trigonometric polynomnial is a function of the form:
T(x) = ag + Xr=1(ay cos(kx) + by, sin(kx))
where @, and by, are real numbers.

The degree of a trigonometric polynomial (trig polynomial) is the order, k, of the
highest nonzero coefficient.

When working with trig polynomials it is useful to remember that :

sin(—x) = —sin(x) and cos(—x) = cos(x).

That is, sin(x) is an odd function and cos(x) is an even function.

Def. we say a function, f(x), is periodic of period p, if f (x + p) = f(x) for all
x € R, and p is the smallest such number where that is true.
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Ex. f(x) = cos(2x) has a period of 7.

y = cos(2x)
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Def. C?™ = {continuous functions on R such that f(x + 2m) = f(x),x € R}.
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Notice that every trig polynomial belongs to C?™.

C2™ is a vector space and a metric subspace of C (R), bounded continuous functions
on R. C?Tis complete with respect to the metric given by

d(f,g) =sup|f(x) — gx)|.
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Our goal is to prove an anologue to the Weierstrass approximation theorem for
functions in C2”.

Weierstrass’s Second Theorem: Given f € C2™ and € > 0, there is a trig polynomial T

suchthat ||f — Tl < € (i.e. sup|f(x) — T(x)| < €). Hence, there is a sequence
xXER

of trig polynomials T}, such that T,, = f uniformly on R.

Def. fi, f2, -, fn are linearly independent if a, f; + --- + a, f, = 0 implies that

a,=a,=-=a,=0.

Let A = {1, cos(x), sin(x), cos(2x), sin(2x), ..., cos(nx) , sin(nx)}.

We will show that the functions in A are linearly independent.

First we define an inner product (or “dot” product) on C2% by

<f,g>=["_f(x)gx)dx.
We say that two elements, f, g € C?™ are orthogonal (or perpendicular) if

<f.g>=[7 f(x)g)dx = 0.

Ex. If f(x) = 1and g(x) = cos(nx), n = 12,3 .., then f(x) and g(x) are
orthogonal.

<f,g>= ffnl(cos(nx))dx = %sin(nx) |¥=7 = 0.



Ex. All pairs of distinct elements in A are orthogonal. This follows from the trig
identities:

(sin(w))(cos(v)) == [sin(u — v) + sin(u + v)]
(sin(u))(sin(v)) = % [cos(u — v) — cos(u + v)]
(cos(u))(cos(v)) = % [cos(u — v) + cos(u + v)].
For example:
< sin(mx), cos(nx) >= J " (sin(ma)) (cos (nx))dx

= %f_nn(sin((m —n)x)) + (sin((m + n)x))dx

1 cos(m-n)x  cos(M+N)X =1

=E(

—_=0.
m—-n m+n X=-T

Now we can show that

A ={1,cos(x),sin(x), cos(2x),sin(2x), ..., cos(nx) , sin(nx)} is a linearly
independent set of functions.

Suppose f(x) = ag + a; cos(x) + -+ + a, cos(nx) + b, sin(x) + :-- + b,, sin(nx)

and for some ay, ..., y, by, ..., by, f(x) = 0forallx € R.

Then we have:
0=<00>=<f,f>
=< ay + a; cos(x) + -+ + a,, cos(nx) + b, sin(x) + --- + b,, sin(nx),
ao, + a, cos(x) + -+ + a, cos(nx) + b, sin(x) + -+ + b, sin(nx) >
= ay? < 1,1 > +a;? < cos(x),cos(x) >+ -+ a,? < cos(nx), cos(nx) >

+b,% < sin(x), sin(x) > + - + b,,> < sin(nx), sin(nx) >.



Since< g,g >=0and < g,9g >=0ifonlyifg =0,
< f,f > = 0implies that a,?, ...,anz,blz, ...bn2 = 0.

Thus ay, ,ay, by, ..., b, = 0, and the elements of A are linearly independent.

T(x) = ag + Xj=1(ay cos(kx) + by, sin(kx)) is called a trig polynomial.

This is because T'(x) can be written as p(sinx, cosx), where p(x, y) is a polynomial in
x and y. This follows from the fact that cos(kx) and sin(kx) can be written as
polynomials in cos(x) and sin(x). For example:

cos(2x) = 2cos?(x) — 1

cos(3x) = cos(2x + x) = (cos(2x))(cos(x)) — (sin(2x))(sin(x))
= (2cos?(x) — 1)(cos(x)) — (2 (sin(x))(cos(x))) (sin(x)))
= 2(cos3(x)) — cos(x) — 2(sin?(x))(cos(x))
= 2(cos3(x)) — cos(x) — 2(1 — cos?(x))(cos(x))
= 4(cos3(x)) — 3 cos(x).

By using cos(kx) + cos[(k — 2) x] = 2 [cos((k — 1) x)][cosx] we can write
cos(kx) as a polynomial in just cos(x).

sin(2x) = 2 sin(x) cos(x)
sin(3x) = sin(2x + x) = sin(x) (4cos?(x) — 1) .

By using sin[(k + 1) x] — sin[(k — 1) x] = 2(cos(kx)(sinx)) we can write
sin(kx) as sin(x) times a polynomial of degree (k — 1) in cos(x).



Thus cos(kx) and sin(kx) can be written as polynomials of degree k in sin(x) and
cos(x). Hence T(x) = ay + Xx=1(ay cos(kx) + by sin(kx)) can be written as a
polynomial of degree n in sin(x) and cos(x).

Conversely, any polynomial in sin(x) and cos(x) can be written in terms of
cos™(x) and (cos™ 1(x))(sin(x)), and in turn cos™(x) and (cos™ 1(x))(sin(x))
can each be written in the form

ay + Xr=q1(ay cos(kx) + by sin(kx)) .

We can now use the Weierstrass approximation theorem to help prove Weierstrass’s
second theorem.

First we need:

Lemma: Given an even function f € C?™ and € > 0, there is an even trig polynomial
T suchthat ||[f — Tl < €.

Proof: Let f € C?™. The values of f are determined by its values on [—1, 7t]. Since f
is even, its values are determined by its values on [0, ir].

letx =cos 1y, where—1<y<1land0<x <.

So f(x) = f(cos™1y) = h(y), where his continuouson —1 < y < 1.

By the Weierstrass approximation theorem there is a polynomial in y, p(y), such that

sup |h(y) —p(y)| < € orequivalently sup |[f(cos™1y) —p()| <e.

—1=<y<1 —1<y<1

But y = cos(x) so p(cos(x)) is a polynomial in cos(x) and we can find a trig
polynomial T'(x) = p(cos(x)).



Thus: sup |f(x) —T(x)| <e.

O0<x<m

Since f and T are even and have f(x + 2m) = f(x) and T(x + 2m) = T(x)
sup|f(x) = T(x)| <e.
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Now we apply this lemma to prove:

Weierstrass’s second theorem: Given f € C?™ and € > 0, there is a trig polynomial T

suchthat ||f — T|le < € (i.e. sup|f(x) — T(x)| < €). Hence, there is a sequence
x€ER

of trig polynomials T}, such that T,, = f uniformly on R.

Proof. Given f € C?”, both

fO)+f(—=x) and (f(x) — f(—x))sin(x)
are even functions.

Thus by the previous lemma there are even trig polynomials T; and T, such that
fO) + f(=x) = Ty(x) + e (x) and (f(x) = f(=x)) sin(x) = T,(x) + e, (x)

€ €
where ||el(x)||oo<z and ||ez(x)||oo<5.

Multiplying the first equation by sin?(x) and the second by sin(x) and adding them
we get:

(f(x) + f(—=x)) sin? x = (sin? x) Ty (x) + (sin? x) e (x)
(f(x) = f(=x)) sin® x = (sin(x) T, (x) + (sin(x) e, (x)

2f(x) sin? x = (sin? x)T; (x) + (sinx)T,(x) + (sin? x)e; (x) + (sinx)e,(x).



Dividing by 2 we get:

f(x)sin? x = %[(sin2 x)T; (x) + (sinx)T,(x)]
+% [(sin? x)e; (x) + (sinx)e,(x)].

But % [(sin? x)T; (x) + (sinx)T,(x)] is a trig polynomial, let’s call it T3 (x).

In addition

sup %[(sin2 x)e;(x) + (sinx)e,(x)]| < sup |§(sin2 ) (e1 ()] +
x€ER x€R

sup| > (sin x) (e, (x))]
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So f(x)sin?x =T3(x) +e3(x); (x) where |le3(%)|le < g

If f € C2™ then soisf(x—g). So

f (x — g) sin?x = Ty(x) + es(x);  where |les(%)|le < g

T
Replacing x + > for X in the above equation we get:

f(x)sin?(x + g) =Ts(x) + es(x);  where|les ()| < g

sin (x + g) = cos(x) so we get:

f(x) cos?(x) = Ts(x) + es(x). (%)



Now we add the two earlier equations ((*) and (**)) :
f () sin?(x) = T3(x) + e3(x)
f(x) cos?(x) = Te(x) + es(x)
f(x) =Te(x) + eg(x)

where supleq(x)| = suples(x) + es(x)| < suplez(x)| + suples ()|
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So we have:
sup|f(x) — Te(x)| = suples(x)| < €.
X€ER XER

Thus |If = Tlle < €.

Fourier Series

Given f € C?™ we can express it as the uniform limit of a sequence of trigonometric
polynomials, T}, (x), i.e., T,,(x) converges uniformly to f(x). Now we would like, at
least in some cases, to calculate a sequence T, (x) where this is the case. Here we will
calculate the Fourier series for f(x).

We will start off writing:

Ao N :
f(x)~—+ ) (aycos(kx) + by sin(kx))
> kzzl k k

where the RHS is the Fourier series for f(x). We write ~ instead of = because we
don’t know if the RHS will converge (pointwise) to the value of f at each x € R.



How do we calculate a;, b;?

If we multiply both sides by sin(mx) and integrate we get:

f " f(x) sin(mx) dx
" Ao N :
= sin(mx) [—+ ) (ay cos(kx) + by sin(kx))]dx
j_n > kzzl k k

= ffn% sin(mx) dx

+ ffn sin(mx) Y.p—1(ay cos(kx) + by sin(kx))]dx

Now assuming for the moment that we can integrate term by term:
_ (™ Qo _;
= f_n x sin(mx) dx
- T o, . .
+ et f_n(sm(mx))(ak cos(kx) + by, sin(kx))dx

= b,, f_nn sin?(mx) dx = b,, f_nn G — %cos(me)) dx = b,,m.
So we have: b,, = %ffnf(x) sin(mx) dx.
Similarly we get:  y, = %f_nnf(x) cos(mx) dx.

(with @y = — ffn f(x)dx).
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