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                                                Totally Bounded Sets 

 

Def.  A set 𝐸 in a metric space 𝑀, 𝑑 is bounded if there is a real number 𝐾 and a 

point 𝑞𝜖𝑀 such that 𝑑(𝑝, 𝑞) < 𝐾 for all 𝑝𝜖𝐸. 

 

 

 

 

 

 

Ex.   Let 𝑀 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = [0,1) ∪ {−2}. 

        𝐸 is a bounded set.  We can take 0𝜖𝑀 and 𝑑(0, 𝑝) < 3, for all 𝑝𝜖𝐸. 

 

 

 

 

 

Def.  A set 𝐴 in a metric space 𝑀, 𝑑 is said to be totally bounded if, given any 

 𝜖 > 0, there exist finitely many points 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑀 such that                         

𝐴 ⊆ ⋃ 𝐵𝜖(𝑥𝑖)
𝑛
𝑖=1 , where 𝐵𝜖(𝑥𝑖) = {𝑥 ∈ 𝑀| 𝑑(𝑥, 𝑥𝑖) < 𝜖}. 
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Ex.  (−2,3] ∪ {7} ∪ [8,9] is a totally bounded set in ℝ (In fact, in ℝ being 

totally bounded is equivalent to being bounded.  However, this is not true for a 

general metric space). 

 

 

Ex. (−1,6] ∪ (9, ∞) is not a totally bounded set in ℝ. 

 

Notice that if 𝐴 is totally bounded, then 𝐴 is bounded (but not the other way 

around).  Let’s see why. 

Given any 𝜖 > 0, there exist finitely many points 𝑥1, 𝑥2, … , 𝑥𝑛 such that 

 𝐴 ⊆ ⋃ 𝐵𝜖(𝑥𝑖)
𝑛
𝑖=1 . 

If 𝑥 is any point in 𝐴 then 𝑥 ∈ 𝐵𝜖(𝑥𝑖), for some 𝑖.  

 

Now we show that 𝑑(𝑥, 𝑥1) ≤ max
1≤𝑘≤𝑛

𝑑(𝑥1, 𝑥𝑘) + 𝜖. 

 

 

 

 

 

 

 

 

By the triangle inequality: 

𝑑(𝑥, 𝑥1) ≤ 𝑑(𝑥, 𝑥𝑘) + 𝑑(𝑥𝑘 , 𝑥1) ≤ 𝑑(𝑥, 𝑥𝑘) + max
1≤𝑘≤𝑛

𝑑(𝑥1, 𝑥𝑘). 

 

𝑥1  

𝑥𝑖  

𝑥 
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But 𝑥 has to be in 𝐵𝜖(𝑥𝑖), for some 𝑖, so 𝑑(𝑥, 𝑥𝑖) < 𝜖.  Thus we have: 

                   

                     𝑑(𝑥, 𝑥1) ≤ 𝑑(𝑥, 𝑥𝑖) + 𝑑(𝑥𝑖, 𝑥1) < 𝜖 + max
1≤𝑘≤𝑛

𝑑(𝑥1, 𝑥𝑘).  

 

Thus the distance between any point in 𝐴 and the point 𝑥1 is bounded, hence 𝐴 is 

bounded. 

 

 

Now let’s see an example where 𝐴 is bounded but not totally bounded. 

 

Ex.  Let  𝑀 = {𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 {𝑥𝑖} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ |𝑥𝑖
|< ∞}∞

𝑖=1 .     

       We can turn this set into a metric space with the following metric: 

                        𝑑({𝑥𝑖}, {𝑦𝑖}) = ∑ |𝑥𝑖 − 𝑦𝑖|
∞
𝑖=1 . 

        This metric space is usually called 𝑙1. 

        Let 𝐴 = {{𝑥𝑖}|𝑥𝑖 = 1 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑖 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}.  So the elements 

        of 𝐴 are:    

         𝑒1 = {1,0,0,0,0, … } 

         𝑒2 = {0,1,0,0,0, … } 

          ⋮ 

          𝑒𝑛 = {0,0,0, … ,1,0,0, … },  where the 𝑛𝑡ℎ  element is 1, etc.  

           ⋮  

 

          If 𝑧 = {0,0,0, … } ∈ 𝑀,  then 𝑑(𝑧, 𝑒𝑖) = 1, for all 𝑒𝑖 ∈ 𝐴. 

         Thus 𝐴 is bounded. 
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          Now let’s show that 𝐴 is not totally bounded. 

          Notice that 𝑑(𝑒𝑖, 𝑒𝑗) = 2 for 𝑖 ≠ 𝑗. 

          Thus every element of 𝐴 is a distance 2 from every other element of 𝐴. 

 

To show that 𝐴 is not totally bounded we have to find an 𝜖 > 0 and show that we 

can’t find a finite number of points 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑀 such that 𝐴 ⊆ ⋃ 𝐵𝜖(𝑥𝑖)𝑛
𝑖=1 . 

We can do this by choosing 𝜖  (less than or) equal to 
1

2
  of the common distance 

between all of the points of 𝐴. 

So in this case 𝜖 = 1. 

Let’s assume that we can find a finite number of points 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑀 such 

that 𝐴 ⊆ ⋃ 𝐵1(𝑥𝑖)𝑛
𝑖=1 , and get a contradiction.  

 

Since 𝐴 has an infinite number of elements, then for some 𝑖, 𝐵1(𝑥𝑖), must contain 

at least 2 elements of 𝐴 (in fact, in this case there must be an 𝑖 such that 𝐵1(𝑥𝑖) 

contains an infinite number of points in 𝐴). 

 

 

 

 

But by the triangle inequality, if 𝑒𝑗 , 𝑒𝑘 ∈ 𝐵1(𝑥𝑖), 𝑗 ≠ 𝑘, then: 

     2 = 𝑑(𝑒𝑗, 𝑒𝑘) ≤ 𝑑(𝑒𝑗, 𝑥𝑖) + 𝑑(𝑥𝑖 , 𝑒𝑘) < 1 + 1 = 2 

which is a contradiction (2 can’t be less than 2).  

 

Thus there exists an  𝜖 > 0, such that we can’t find a finite number of points 

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑀 where 𝐴 ⊆ ⋃ 𝐵𝜖(𝑥𝑖)𝑛
𝑖=1 . 

Thus 𝐴 is not totally bounded. 

𝑥𝑖  

𝑒𝑗  
𝑒𝑘  

1 
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In the previous example we were able to show that if a set 𝐴 has an infinite 

number of points that are a fixed distance from every other point in the set, then 

𝐴 cannot be totally bounded. Notice that this can’t happen in ℝ𝑛 with the 

standard metric.  For example, if we take 3 as the fixed distance, the largest 

subset of ℝ where every point is a distance 3 from every other point, is a subset 

with 2 points in it.  In ℝ2 the largest subset has 3 point in it.  In ℝ𝑛 the largest 

subset where every point is a distance 3 from every other point is a set with      

𝑛 + 1 elements. 

 

 

In fact, every bounded set in ℝ𝑛 (with the standard metric) is totally bounded 

(this is left as an exercise).  To see one way to approach a proof of this statement 

let’s take 𝐴 = [1, 4] ⊆ ℝ and let 𝜖 = 1. 

Clearly, we can take balls of radius 1 centered at 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3, and 

𝑥4 = 4 and they will cover 𝐴. 

 

 

 

 

If 𝜖 =
2

3
 we could take balls of radius 

2

3
 centered at 𝑥1 = 1, 𝑥2 =

5

3
 , 𝑥3 =

7

3
 ,

𝑥4 = 3, and 𝑥5 =
11

3
 and they will cover 𝐴. 

 

Generalizing this process for any given 𝜖 shows that 𝐴 is totally bounded.  

 

 ( ) ) ) ) ( ( ( ( 

            0                     1                        2                       3                        4                        5 
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However, if we change the metric on ℝ𝑛 (or ℝ) a bounded set is not necessarily 

totally bounded. 

 

Ex.  Let 𝑀 = ℝ and the metric given by 𝑑(𝑥, 𝑦) = 8 if 𝑥 ≠ 𝑦 and 𝑑(𝑥, 𝑥) = 0.   

       Now let 𝐴 = ℤ = {0, ±1, ±2, … }. 

       a.   Show that 𝐴 is bounded. 

       b.   Show that 𝐴 is not totally bounded. 

 

a.   
1

2
∈ 𝑀 and 𝑑 (

1

2
 , 𝑥) = 8 for all 𝑥 ∈ 𝐴.  Thus 𝐴 is bounded. 

b.   For any two points 𝑥, 𝑦 ∈ 𝐴,   𝑑(𝑥, 𝑦) = 8,  if 𝑥 ≠ 𝑦.  

      Thus take 𝜖 =
8

2
= 4 (or any positive number smaller than 4) and suppose 

      there exist 𝑥1, … , 𝑥𝑛 ∈ 𝑀 with 𝐴 ⊆ ⋃ 𝐵4(𝑥𝑖)
𝑛
𝑖=1 . 

       Since 𝐴 has an infinite number of elements,  for some 𝑖,  𝐵4(𝑥𝑖) contains at 

       least two different elements of 𝐴.  Let’s call there elements 𝑝1, 𝑝2 ∈ 𝐵4(𝑥𝑖) . 

       Now by the triangle inequality (and using the fact that 𝑝1, 𝑝2 ∈ 𝐵4(𝑥𝑖)): 

             8 = 𝑑(𝑝1, 𝑝2) ≤ 𝑑(𝑝1, 𝑥𝑖) + 𝑑(𝑥𝑖 , 𝑝2) < 4 + 4 = 8. 

        Which is a contradiction ( 8 ≮ 8). 

        Thus each ball 𝐵4(𝑥𝑖) can contain at most one point of 𝐴.  Since 𝐴 has an 

         inifinite number of elements, it can’t be covered with a finite number of balls 

         of radius 4.   

         Hence, 𝐴 is not totally bounded. 

 

Def.  The diameter of a subset 𝐴 ⊆ 𝑀, 𝑑 is: 

                                𝑑𝑖𝑎𝑚(𝐴) = sup{𝑑(𝑎, 𝑏)|  𝑎, 𝑏 ∈ 𝐴}. 

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjUnfOGjIriAhVLZN8KHdYNBPMQjRx6BAgBEAU&url=http://www.tcs.fudan.edu.cn/~rudolf/Courses/Algorithms/Alg_ss_07w/Webprojects/Qinbo_diameter/2d_alg.htm&psig=AOvVaw1KgjomrstY4b_PZe-KiMu_&ust=1557341593971963
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Ex.  Find the diameter of the set 𝐴 = {(𝑥, 𝑦) ∈ ℝ2| |𝑥| < 1, |𝑦| < 1}. 

 

 

       𝑑𝑖𝑎𝑚(𝐴) = 𝑑((1,1), (−1, −1)) 

                         = √22 + 22 = 2√2. 

 

 

 

 

Lemma:  𝐴 is totally bounded if and only if, given 𝜖 > 0, there are finitely many 

sets 𝐴1, 𝐴2, … , 𝐴𝑛 ⊆ 𝐴, with 𝑑𝑖𝑎𝑚(𝐴𝑖) < 𝜖 for all 𝑖 = 1, … , 𝑛, such that 

 𝐴 ⊆ ⋃ 𝐴𝑖
𝑛
𝑖=1 . 

 

Proof:  Assume that 𝐴 is totally bounded.   

             Then given 𝜖 > 0 there exist points 𝑥1, 𝑥2, … , 𝑥𝑛 such that 

              𝐴 ⊆ ⋃ 𝐵𝜖

4
(𝑥𝑖)

𝑛
𝑖=1 . 

              Now let 𝐴𝑖 = 𝐴 ∩ 𝐵𝜖

4
(𝑥𝑖) ⊆ 𝐴. 

 

 

 

 

 

 

(1,1) 

(−1, −1) 

𝐴 

𝑥𝑖  

𝜖

4
 

𝐴𝑖 = 𝐴 ∩ 𝐵𝜖
4

(𝑥𝑖) 
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              𝑑𝑖𝑎𝑚(𝐴𝑖) ≤ 𝑑𝑖𝑎𝑚 (𝐵𝜖

4

(𝑥𝑖)) =
𝜖

2
< 𝜖 and   𝐴 ⊆ ⋃ 𝐴𝑖

𝑛
𝑖=1 . 

              Now assume given any 𝜖 > 0, there are finitely many sets 

              𝐴1, 𝐴2, … , 𝐴𝑛 ⊆ 𝐴, with 𝑑𝑖𝑎𝑚(𝐴𝑖) < 𝜖 for all 𝑖 = 1, … , 𝑛, such that 

              𝐴 ⊆ ⋃ 𝐴𝑖
𝑛
𝑖=1 . 

 

             Choose any point 𝑥𝑖 ∈ 𝐴𝑖.  Then 𝐵𝜖(𝑥𝑖) ⊇ 𝐴𝑖,  since 𝑑𝑖𝑎𝑚(𝐴𝑖) < 𝜖. 

 

𝑥𝑖  

 

 

 

 

 

 

 

              Thus 𝐴 ⊆ ⋃ 𝐵𝜖(𝑥𝑖)
𝑛
𝑖=1   and 𝐴 is totally bounded. 

 

Def.  Recall that a sequence {𝑥𝑛} in a metric space 𝑀 converges to a point 𝑥 ∈ 𝑀  

if given any 𝜖 > 0 there exists a 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then 𝑑(𝑥, 𝑥𝑛) < 𝜖. 

 

Def.  Also recall that a sequence {𝑥𝑛} in a metric space 𝑀 is called Cauchy if given 

any 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ such that if 𝑛, 𝑚 ≥ 𝑁 then 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜖. 

 

𝑥𝑖  

𝐴𝑖  

𝜖 

𝐵𝜖(𝑥𝑖) 
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Lemma: Let {𝑥𝑛} be a sequence in a metric space 𝑀, and let 𝐴 = {𝑥𝑛}. 

i. If {𝑥𝑛} is Cauchy, then 𝐴 is totally bounded. 

ii. If 𝐴 is totally bounded then {𝑥𝑛} has a subsequence which is Cauchy. 

 

Ex.  Let 𝑥𝑛 = (−1)𝑛 in ℝ.  So in this case 𝐴 = {−1,1}, which is totally bounded in 

ℝ, but the sequence {−1,1, −1,1, −1,1, … } does not converge in ℝ.  However, the 

subsequences {1,1,1,1 … }  and {−1, −1, −1, … } do converge in ℝ and hence 

must be Cauchy. 

Proof of Lemma: i.  Let 𝜖 > 0.  Since {𝑥𝑛} is a Cauchy sequence there exists an 

𝑁 ∈ ℤ+ such that if 𝑛, 𝑚 ≥ 𝑁 then 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜖. 

In other words,  𝑑𝑖𝑎𝑚({𝑥𝑛}, 𝑛 ≥ 𝑁) ≤ 𝜖. 

 

 

 

 

 

 

 

 

 

 

 

Thus:   𝐴 = 𝑥1 ∪ 𝑥2 ∪ 𝑥3 ∪ … ∪ 𝑥𝑁−1 ∪ {𝑥𝑛| 𝑛 ≥ 𝑁}. 

For 𝑖 = 1, … , 𝑁 − 1;   𝑥𝑖 ∈ 𝐵𝜖(𝑥𝑖),  and  {𝑥𝑛| 𝑛 ≥ 𝑁} ⊆ 𝐵𝜖(𝑥𝑁). 

Thus  (⋃ 𝐵𝜖(𝑥𝑖)) ∪ 𝐵𝜖(𝑥𝑁) ⊇ 𝐴𝑁−1
𝑖=1 ,  and 𝐴 is totally bounded.. 

𝑥𝑁  

𝜖 

𝑥1  
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Now let’s assume that 𝐴 is totally bounded and show that it has a Cauchy 

subsequence. 

If 𝐴 is a finite set then any sequence must repeat some element of 𝐴 an infinite 

number of times and thus has a subsequence which is Cauchy (since it’s a 

constant sequence). 

If 𝐴 is infinite, since it is totally bounded it can be covered by finitely many sets of 

diameter less than 1. 

 

 

 

 

 

 

 

 

 

One of these sets must contain an infinite number of points of 𝐴.  Call that set 𝐴1. 

𝐴1 ⊆ 𝐴 so it’s totally bounded and can be covered by a finite number of sets of 

diameter less than 
1

2
 . 

One of these sets must contain an infinite number of points of 𝐴1.  Call it 𝐴2. 

Continuing the process we get a decreasing sequence of sets: 

                                       𝐴 ⊇ 𝐴1 ⊇ 𝐴2 ⊇ ⋯  

where 𝐴𝑘  contains infinitely many points of 𝐴 and 𝑑𝑖𝑎𝑚(𝐴𝑘) <
1

𝑘
 . 

Choose any element 𝑥𝑛𝑘
∈ 𝐴𝑘, then we have: 

                                     𝑑𝑖𝑎𝑚 (𝑥𝑛𝑗
|  𝑗 ≥ 𝑘) ≤ 𝑑𝑖𝑎𝑚(𝐴𝑘) <

1

𝑘
 . 

So {𝑥𝑛𝑘
} is a Cauchy sequence. 

 

𝑀 

 
𝐴1  

𝐴 
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Theorem: A set 𝐴 is totally bounded if and only if every sequence in 𝐴 has a 

Cauchy subsequence. 

 

Proof.  The previous lemma showed if 𝐴 is totally bounded then every sequence 

in 𝐴 has a Cauchy subsequence. 

Now let’s show if every sequence in 𝐴 has a Cauchy subsequence then 𝐴 is totally 

bounded.   

We do this by contradiction.  Assume 𝐴 is not totally bounded. 

Then there is some 𝜖 > 0 such that 𝐴 cannot be covered by finitely many balls of 

radius 𝜖. 

Start with any point 𝑥1 ∈ 𝐴. 

We can always find a point 𝑥2 ∈ 𝐴, with 𝑑(𝑥1, 𝑥2) ≥ 𝜖. 

 

 

 

 

 

 

 

 

 

 

Given 𝑥2 we can always find 𝑥3 ∈ 𝐴, with 𝑑(𝑥𝑖 , 𝑥3) ≥ 𝜖,  𝑖 = 1,2. 

Continue this process and get a sequence where 𝑑(𝑥𝑛, 𝑥𝑚) ≥ 𝜖,  for 𝑛 ≠ 𝑚. 

So {𝑥𝑛} has no Cauchy subsequence. 

𝑥1  

𝑥2 

𝑥3 

𝜖 

𝜖 𝐴 

𝑀 
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Corollary (The Bolzano-Weierstrass Theorem).  Every bounded infinite subset of ℝ 

has a limit point in ℝ. 

 

Proof.  Let 𝐴 be a bounded infinite subset of ℝ. 

Since 𝐴 is infinite we can form a sequence {𝑥𝑛} of distinct points in 𝐴. 

Since 𝐴 is bounded in ℝ, it is totally bounded. 

𝐴 is totally bounded so {𝑥𝑛} has a Cauchy subsequence {𝑥𝑛𝑘
}. 

But Cauchy sequences in ℝ converge since ℝ is complete, so 𝑥𝑛𝑘
→ 𝑥 ∈ ℝ. 

Thus 𝑥 is a limit point of 𝐴. 

 

Another way to state the Bolzano-Weierstrass theorem is to say that any bounded 

sequence of real numbers has a convergent subsequence. 


