Review of Analysis 1: Important Concepts and Definitions

The Triangle inequalities for R and R":
a. Ifx,y € R then |x +y| < |x| + |y]

b. If U,w € R" then ||¥ +w| < [I7]] + [IW]|;

where ¥ =< vy, v,, ..., v, > and ||B]| = V2 + vZ + - v2.

Def. A set X, whose elements are called points, is a Metric Space if for any two
points p, geX there is a real number d(p, q), called the distance (or metric), such
that:

a. d(p,q)>0ifp#gq,andd(p,p) = 0.

b.  d(p,q) = d(q,p)
c. d(p,q) <d(p,r)+d(r,q) foranyreX (Triangle inequality).

Ex. X=R, d(p,q) = |p — q| (the standard distance function on R)

To show X, d is a metric space, we need to show that d satisfies a,b,c above.

a. d(p,q) =|p—ql >0 ifp # q (property of absolute values),
dip,p) =Ilp—pl=0
b. d(p,q) =Ip—ql=Ilq—pl=4d(qp)
c. Toshowd(p,q) <d(p,r) +d(r,q), reX, for this distance function means:
lp—dql<lp—rl+Ir—ql
In the triangle inequality: [x +y| < |x|+|y|, letx=p—7r and y=1r—¢q

Then we get: p—ql<Ip—rl+|r—q].



Ex. Show R,d isa metric space where d(p,q) = |eP — e].

a. d(p,q) =|eP —e >0 forp # q because f(x) = e* isan increasing
function, and d(p,p) = |e? — e?| = 0.

b. d(p,q) = |e? —e| = [e? —eP| =d(q,p).

c. Weneedtoshow: d(p,q) < d(p,r)+d(r,q) foranyreR. In this case:
|leP —el| < |eP —e"| + |e” — ef].

This looks daunting, but remember the Triangle inequality for real numbers:
lx + y| < |x| + |yl

Nowletx =eP —e"and y=e" — e, sox +y = eP — e%. Hence:
le? —el| < [eP —e"| + |e" —e1].

Hence R, d is a metric space.

Note: Not all metric spaces are subsets of R".

Ex. X = C[0,1] =set of real valued, continuous functions on [0,1]. X is a
metric space with either of these 2 metrics (there are an infinite number of

metrics on X)

d,(f,9) = [, 1f(x) — g(x)|dx
d,(f,9) = Jmax If (x) — g(x)|.



Ex. Let f(x) = x% and g(x) = x3. Notice that f(x), g(x) € C[0,1]. Using
the 2 metrics just defined on C[0,1], find d (f, g) and d5(f, 9).

di(f,9) = f; If () — g(O)ldx = [ |x* — x3|dx .

Notice thatwhen 0 < x < 1, x? = x3 (when 0 < x < 1 the higher the
power the lower the value).

Thuswhen0 < x <1, x> —x3>0 hence |x?—x3| =x%—x3. so
1 1
d,(f,g) = fo |x% — x3|dx = fo (x? — x¥)dx

1 3 1 _a,x=1 (1 1) 1
=—x> —=x**Zr=(==-=)=—.
3 4 lx=0 3 4 12

— _ — 2 _ .3
dz(f,g)—xrg[gﬁ]lf(x) g(x)]| xren[gg]lx x°|

To find the maximum value of |h(x)|, we need to find where h(x) has its greatest
positive value and its most negative value and choose the one which is greater in
absolute value (e.g. if h(x) has 4 as its most positive value and -6 as its most
negative value then the maximum of |h(x)| is |-6]=6.)

In this case we already saw that x? —x3 > 0sowe just have to find the

absolute maximum value of h(x) = x? — x3. Using first year calculus, find the
values of h(x) at all critical points in [0,1] and then test the values at the
endpoints.

h(x) =2x—-3x>=x(2-3x)=0

[SSI ]

= x=0o0or x =

h(0) =0, h(3)=(§)2—(§)3=f—3=i, h(1) =12 —13 = 0.
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So the absolute maximum value of h(x) is Py (absolute minimum is 0). So

— _ — 2 _ .31 =%
dz(f,g)—xgl[gﬁ] |f (x) — g(x)| xrg[gfi]lx x*| ==

Def. Let X be a metric space with distance function d.

a. A neighborhood of p, where peX, is a set N,.(p) of all points g such that
d(p,q) < r forsomer > 0.

N, (p)




b. A point pis a limit point of E C X if every neighborhood of p contains a point
q # p such that geE.
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Ex. Let X = R, and d the standard metric (i.e. d(p,q) = |p — q|). LetE = (0,1)

Thatis E = {xeR| 0 < x < 1}. The set of limit points of E = [0,1].

N
L
Yamn
Y/

Ex. LetX = R, and d the standard metric. Let E = (0,1) U {3} U {—2}.

The set of limit points of E = [0,1].

<4/



c. If peE and p is not a limit point of E, then p is called an isolated point of E.

Ex. Let X = R, and d the standard metric. Let E = (0,1) U {3} U {—2}.

{3}, {—2} areisolated points of E.

d. E is closed if every limit point of E is a pointin E.

Ex. Let X = R, and d the standard metric. Let E = [0,1] U {5} U {—3}.
E isclosedin X = R.

Let F = (0,1] U {5} U {—3}. Fisnotclosedin X = R,sincex = O isa
limit point of F, but is not contained in F.

e. A point pis an interior point of E if there is some neighborhood N of p, such

that NC E.

Ex. Let X = R, and d the standard metric. Let E = [0,1) U {3}.

0 < x < 1 areinterior points of E. x = 0 and x = 3 are not interior points of E.
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f. E is open if every point of E is an interior point

Ex. LetX = R, and d the standard metric. Let E = (0,1).
E isanopensetin X = R.

Note: Let X = R?, and d the standard metric. Let F = {(x,y)| 0 < x < 1,y = 0}

Although F is essentially the same set as E in our example, F is NOT an open
subset of X = R? because a neighborhood

in R? is a disk. il
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g. The complement of E (denoted E€), is the set of all point peX such thatp ¢ E.
Ex. LetX = IR, and d the standard metric. Let E = [0,1).
E€¢ = (—00,0) U [1, ).

h. E is bounded if there is a real number M and a point geX such that
d(p,q) < M for all peE.



Ex. LetX = R, and d the standard metric. Let E = [0,1) U {—2}.

E is a bounded set. We can take 0eX and d(0,p) < 3, forall p€E.
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i. Eisdensein X if every pointin X is a limit point of E, or a point of E (or both).

Ex. E=UZ®,(i,i +1), Eisdensein X = R, and d the standard metric.

Ex. E = {rational numbers}; E is dense in X = R, and d the standard metric.

Def. By an open cover of a set E € X, a metric space, we mean a collection
{G,} of open setsin X suchthat £ © U, G,

e -

Open Cover of E

Ex. LetG; = (0,i) € R. Then {G;};2, is an open cover of (0, o) (it's also an
open cover of (0,n), [1,7], etc.)

G
G, = (011) :
GZ = (0,2) { \
¢ ) ) ) ) ) )
G; = (0,3) 0 G 1 2 3 4 5 6



Ex. LetG; = {(x,y)| (x —D)?+y2 <1}, i =0,1,2,3. {G;};_yisanopen
coverof R ={(x,y)|0<x <35 0<y< %}

Def. Asubset K € X, d is said to be compact if every open cover contains a

finite subcover.

This means that if {G,} is any open cover of K, i.e., K € U, G,, then there exist
G; Giz! . Gin such that K © Gil U Giz U..U Gin'

L’

Finite Subcover of K

Open Cover of K

Heine-Borel Theorem: If E is a set in R™ then E is compact if and only if E is

closed and bounded.



Def. A sequence {pn} in a metric space X is said to converge if there is a point
peX such that for all € > 0, there exists an N, a positive integer, such that if

n = N thend(p,, p) < €.

In this case we say that lim p,, = p.
n—>00

If {p,,} does not converge, we say that {p,,} diverges.

X
*D
® P2
®P3
9 ®
Ex. Prove that the sequence {—} convergesto 1, i.e. lim — = 1.

n-oon+1

We must show that given any € > 0 we can find N such thatif n = N then

-pl =] -1 <

n+1

We start with the epsilon statement and try to solve the inequality for n.
n— (n+1)| |
n+1) ~ n+1

1
This is equivalentto: n+ 1 > .

n+1 | o Tt

n>1—1.
€

10
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1
Now we might be tempted to let N > P 1, and that’s almost right. We have
1
one small problem. If € = 10, for example, P 1 is a negative number. So just

1
choosing N > - 1 would also include N = 0 (but N is a positive integer).

1
We can get around this problem by letting N > max(0, e 1).

Let’s show that this choice of N works.

1 1

T on+1 %—1+1 B

Ifn = N then:
n+1

so lim — = 1.
n—-oo n+1
Notice that which metric we use can matter when it comes to convergence.
If we take the sequence {ﬁ} but use the metric,
dip,g) =1 ifp#q
=0 ifp=gq

then d (L, 1) = 1 for all n. Thus with this metric {L} does NOT converge
n+1 n+1
to 1.

Def. A sequence {p,} in a metric space X, d is said to be a Cauchy Sequence if for
every € > 0 there exists an N, a positive integer, such that if m,n = N then

d(Pm, Pn) < E.

Theorem: In a metric space X, d, every convergent sequence is a Cauchy
sequence.



12

Note: The converse of this theorem is not true. If {p,,} is a Cauchy sequence it
does not mean thatp,, = p in X,d. Asan example take X ={rational numbers}
with the usual metric. Now take a sequence of rational numbers that approaches

V2, {1,1.4,1.41,1.414,1.4142, ..}. Thisis a Cauchy sequence but it doesn’t
converge in X={rational numbers} (although it does converge in the real
numbers).

Def. A metric space in which every Cauchy sequence converges is said to be
Complete.

Ex. R¥ is a complete metric space.

1
Ex. Prove {E} is a Cauchy sequence in R (with the usual metric).

We need to show that given any € > 0 there exists an N € Z* such that if

mn>Nthend(pm,pn)— |m—m| < €.

By the triangle inequality we have:

1
ol St
m+1 n+1 +1 n+1

Since m,n = N we know that :

|< PSP SN S

|m+1 n+1 +1 n+1 N+1 N+1 N+1°

1

. 2 1
So if we can force — < €, then |[———| < €.
N+1 m+1 n+1

2
Solve — < e for N
N+1
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N+1
2

N+1>2
(S

1 . 2 .
> - since both —— and € are positive
€ N+1

N>2_1.
S

We have one small technical issue that prevents us from choosing N to be any

2 2
integer greater than i 1. If e =5, for example, then P 1 < 0andthusOis
2
an integer greater than P 1. Thus we need to choose N to be any positive

2 2
integer greater than P 1. We can do that by letting N > max (O, - 1)

where N is an integer.

Now let’s show that this N “works”.

Ifm,n = N > max (0,% — 1) then we have:

1 1 1 1 1 1 2 2
| — |S + < + = 5 =€
m+1  n+i1 m+1 - n+l T N+l N+1 N+1 o S-141

1
Thus {E} is a Cauchy sequence in R.

Note: As with convergence of sequences, whether a sequence is a Cauchy
sequence can depend on which metric you use. In the example above we

1
showed that the sequence {m} is Cauchy using the standard metric however

if we take the metric d(p, q) = | % — é |;

d(i L):|(m+1)—(n+1)|=|m—n|z1; ifm # 1.

m+1’ n+1

1
Thus {m} is NOT a Cauchy sequence with this metric.



14

However, notice that the sequence {n} = 1, 2, 3, 4, ... is a Cauchy sequence with
this metric since:

1

1,1 _ 2
d(ay, ap) =dn,m) = |———|< t—<—+-=-<e¢

N 3

which can be made less than € by choosing N > —

f'h

Thus [1, 0] is not a complete metric space with this metric.

Def. Let {s,} be a sequence of real numbers such that:

1. If for every real number M there is a positive integer N such that if n > N then

> M, then we say lim s,, = 400

n—-o0oo

2. If for every real M there is a positive integer N such that if n = N then

n < M, then we say lim s,, = —co,

n—->0o

Def. Suppose E € R U {—o0} U {0} and that there exists an
a€R U {—o0} U {0} such that:

i. x < aforall xeE

ii. if 5 <a thenp isnotan upperbound for E

then a is called the Least Upper Bound for E, or Supremum of E, and we write:

a = supk.

'7 ~T—
= sup(E) Other Upper Bounds of E
=least Upper

Bound of E



If @ eR U {—0o0} U {0} such that:
i. x = aforall xeE
ii. if 8> a then f isnotan lower bound for E

then we say a is the Greatest Lower Bound for E, or the Infimum of E, and we
write: a = infE.

v v LA A am s s— v

\f/ a va(E) \ﬁ’

Other Lower Bounds of E

=Greatest Lower
Bound of E

Notice that infE and supE do not have to liein E.
Ex. LetE = (0,1).
infE =0 and supE =1, neither of which liein E.

Ex. Let E = [0, )

infE =0, supE =+

Ex. LetE = {xeR| 2 < x? < 3}

infE = —/3, supE =+/3

15
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Def. Suppose X and Y are metric spaces, E € X, peE, and f:E =Y. Then f is
said to be Continuous at p if for every € > 0 there exists a § > 0 such that for all
points xeE, if dy(x,p) < 6 then dy(f(x), f(p)) < €. Equivalently, we can say
that f is Continuous at p if )lcl_r)rllj f(x) = f(p).

If X =Y = Rthen f(x) is Continuous at x = ¢ means for every € > 0 there
existsa § > 0 such thatif |[x — c| < § then [f(x) — f(c)| < e.

y = f(x)
FC) + € et o e o o s o el o o g s sy s s e s e s 2 s e e
f(ec)
flc)—e AV T T———

-—-—————-—’-—-—

c—§& t c+46
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Def. If f is Continuous at every point of E, then f is said to be Continuous on E.

Note: For lim f(x) to exist, f(p) does not need to be defined (although it can
xX-p

be). For f(x) to be continuous at peE, f(p) must be defined and equal to
lim f(x).
xX-p

Theorem: Suppose f is a continuous function on a compact metric space X into
R,and M = sup,exf(p) and m = infyexf(p), then there exist points

r,seX suchthat f(r) = M and f(s) = m.

Def. Let f: X = Y; X,Y are metric spaces. We say f is uniformly continuous
on X if for every € > 0 there existsa & > 0 forall p,q € X such that if

dx(p,q) < & thendy(f(p), f(q)) <e.

Notice the difference between continuity and uniform continuity:

1. For uniform continuity, 6 does not depend on the pointin X you are at. For
continuity, the 8 can depend on which point in X you are at (with both continuity
and uniform continuity, § does depend on €).

2. Uniform continuity is a property of a set of points, not a single point.
Continuity is a property at a point and a set of points.

3. If a function is uniformly continuous on a set X, then it is also continuous on X.
However, if a function is continuous on a set X it may, or may not be, uniformly
continuous on X.
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Ex. Let f(x) =

continuous.

o 0 <x < 1. f(x) is continuous on (0,1) but not uniformly

To show that f(x) = % is not uniformly continuous on (0,1).

Let’s fixan € > 0.

To be uniformly continuous we need to find a 8 > 0, that depends only on €,

1 1
- —| < €forall a € (0,1).
X a

such thatif |x — a| < & then

But if € > 0 is fixed, regardless of what § one chooses, by moving "a" toward 0

1

= |lx —a| » oo for |[x — al| < 6.
lax|

|1 1

X a

1
So & must depend on "a" and f(x) = — is not uniformly continuous on (0,1).

Basic trigonometry will also be important in Analysis 2. You should know the
graphs of the the trig functions, the double angle formulas for sin and cos, the
sum and difference formulas for sin and cos, the fact that sin(—x) = —sinx and

cos(—x) = cosx and the definitions of the inverse trig functions (e.g.
sin"la = b means that sin(b) = a).
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Def. Let f be a real valued function on [a, b] € R. We define the derivative of f

at x as: f'(x)=lim%fora<t<b, t+x

t-x

if the limit exists.

Yy =f)
Slope= @:i &)
RN
(xf)—_
E 2 X t

Notice that we could also say, let h = t — X, so that x + h = t and define

f'():

fx+h)—f(x)

f'Gx) = lim -
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Theorem: Let f be defined on [a, b]. If f is differentiable at xe[a, b] (i.e. f'(x)
exists at xe[a, b]) then f is continuous at x.

Proof: To be continuous at x we must show that 11_1)1)1{ f@) =f(x)or

equivalently: ll_r)n(f(t) — f(x)) = 0.

Notice that f(t) — f(x) = [(f(t) f(x))] (t —x); sowe have:
lim(f () - £()) = 1@{[@] (t - x

[(f( )—f(x ))] lim(t — x)

t-x

= (F'GN© = 0.

So differentiability implies continuity, but the converse is not true.

t—>x

Continuity does not imply differentiability.

Ex. f(x) = |x]| iscontinuous at x = 0. Show f is not differentiable at x = 0.

lim £©=£(0)

t—>0+ 0 —tll)r(§1+z=1 since f(t) = |t| =t fort >0
. t t
tll)r(r)l_ A )t ](C)( ) tl_)r(l)”l_ == 1 sincef(t) =|t]| = —t fort < 0.
. tH)—f(0
Thus ltlr%% does not exist, so f'(0) does not exist.

It’s easy enough to prove that f(x) = |x]| is continuous at x = 0 so we will skip
it here.

In fact it’s possible to have a function on R which is continuous everywhere and
differentiable nowhere.
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Theorem: f,g:[a,b] - R are differentiable at xe[a, b], then f + g, fg,g
(where g(x) # 0) are differentiable at xe[a, b] and:

a. (fxg)(x)=f"(x)xg'x)

b. (fg) =f)g'(x) +g()f'(x)

; ([)’ _ 9@ )-fx)g' )
\g (9(x))?

Theorem (Chain Rule) Suppose f is continuous on [a, b], and f'(x) exists at
some point xe[a, b]. Suppose g is defined on an interval which contains the

range of f, and g is differentiable at the point f(x). If h(t) = g(f(©)),
a <t < b then h s differentiableatt = x and h'(x) = g'(f(x)) - f'(x).

Ex. h(t) = (t3+2t)°, = gt)=1t° f()=¢t3+2t
h(x) =g'(f(x)) - f'(x);

g @) =9t so g'(f(x)) =9(x3+2x)8  f'(x) =3x2+2

h'(x) = 9(x3 + 2x)8(3x2 + 2).



22

Ex. Let f(x) = xsin(i) x #0

=0 x=0

As we saw earlier, f(x) is continuous everywhere (including x = 0). Where is
f (x) differentiable?

If x # 0 then we can use the product rule and the chain rule, and we have:
1 1 .1
fl(x) =x (cos (;)) (— x_Z) + sm(;)

- -3 (s () s 2)

At x = 0 we have to apply the definition of f'(0) because the chain rule doesn’t

1
apply at x = 0 since o is not differentiable at x = 0.

.1
F1(0) = lim /O~ © fOFO) _ iy BD

. . .1
= lim sm(—) ; which does not
t—0 t—0 t—0 t

exist.

So f(x) is continuous everywhere and differentiable everywhere except x = O.

Ex. Let f(x) = xzsin(i) x#0
=0 x = 0.

Where is f (x) continuous? Where is f (x) differentiable (i.e. f'(x) exists)?
Where is f'(x) continuous?

We can show that f(x) is continuous everywhere by showing the f'(x) exists
for all x € R, which is done below.



Where is f(x) differentiable?

If x # 0 then we can use the product rule and the chain rule, and we have:
fl(x) =x (cos (x =)+ 2xsm(x)
1 .1
= —COS (—) + 2xsin(=) .
X X
Notice that lir% f'(x) does not exist. Thus, at the very least, f'(x) is not
X—

continuous at x = 0.

Does f'(0) exist?

At x = 0 we have to apply the definition of f'(0) (again, we can’t use the chain

1
rule at x = 0, since o is not differentiable at x = 0).

201
F(0) = lim LOLD _ iy 51

o N
0 lim = lim(tsin(3)) = 0.

t—0

. .1
We need to justify the last step, limtsin-= 0.
t—-0 t
Since |sinx| < 1 for any real number x, we have:
/1
0 < [tsin (?>| < |t].
. . . .1
Since lim 0 = lim|t| = 0, by the squeeze theorem lim| tsin=| = 0.
t—0 t-0 t—>0 t
Now since lim|f(t)| = 0 ifand only iflim f(t) = 0, we conclude that
t>a toa

. .1
limtsin-=0.
t—0 t

So f'(0) = 0, and f(x) is differentiable everywhere.



We saw that f'(x) is not continuous at x = 0. Butis f”(x) continuous for
x #0?

Notice that for x # O:
M) = — L (l) : (1)_2 1
f"(x) = — sin (- + 2 sin " xcos(x)

which is finite for any x # 0, thus f'(x) is continuous for x # 0.
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