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                                    Infinite Limits and Limits at Infinity 

 

 Def.  Let 𝑓: 𝐸 ⊆ ℝ → ℝ and 𝑎𝜖𝐸.  𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = +∞ means for every 𝑀 > 0 there 

exists a 𝛿 > 0 such that if 0 < |𝑥 − 𝑎| < 𝛿 then 𝑓(𝑥) > 𝑀. 

 

 

 

 

 

 

 

 

 

𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = −∞ means for every 𝑀 < 0 there exists a 𝛿 > 0 such that if 

 0 < |𝑥 − 𝑎| < 𝛿 then 𝑓(𝑥) < 𝑀. 

 

 

 

 

 

 

 

𝑀 

( ) 
𝑎 𝑎 − 𝛿 𝑎 + 𝛿 

𝑀 

𝑥 𝑎 − 𝛿      𝑎    𝑎 + 𝛿  

 

(    ) 

𝑦 



2 
 

 

Ex.  Prove that   lim
𝑥→3

1

(𝑥−3)2 = +∞. 

 

We must show given any 𝑀 > 0 there exists a 𝛿 > 0 such that if 0 < |𝑥 − 3| < 𝛿 

then 𝑓(𝑥) > 𝑀. 

 

Start with the statement  𝑓(𝑥) > 𝑀 and work back toward the 𝛿 statement. 

 

1

(𝑥−3)2 > 𝑀   is equivalent to:   (𝑥 − 3)2 <
1

𝑀
   since both sides are positive. 

Now take square roots:     |𝑥 − 3| <
1

√𝑀
      (Note: √𝑥2 = |𝑥|)  

 

Choose 𝛿 =
1

√𝑀
 

Now let’s show that this 𝛿  works: 

|𝑥 − 3| < 𝛿 =
1

√𝑀
  

|𝑥 − 3|2 = (𝑥 − 3)2 <
1

𝑀
  

1

(𝑥−3)2 > 𝑀. 

  

So we have shown   lim
𝑥→3

1

(𝑥−3)2 = +∞. 
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Ex.   Prove that  lim
𝑥→2

−1

(𝑥2−4)2 = −∞. 

 

We must show given any 𝑀 < 0 there exists a 𝛿 > 0 such that if 0 < |𝑥 − 2| < 𝛿 

then 𝑓(𝑥) < 𝑀. 

Again, we start with the statement 𝑓(𝑥) < 𝑀 and work backwards toward the 𝛿 

statement. 

 
−1

(𝑥2−4)2 < 𝑀     is equivalent to  
1

(𝑥2−4)2 > −𝑀   

    

Since both sides are now positive (since 𝑀 < 0) we have: 

(𝑥2 − 4)2 <
−1

𝑀
 ;                Factoring the LHS we get: 

(𝑥 + 2)2(𝑥 − 2)2 <
−1

𝑀
 . 

 

Now let’s find an upper bound for (𝑥 + 2)2.   

Choose 𝛿 ≤ 1.   

Then   |𝑥 − 2| < 1   or     −1 < 𝑥 − 2 < 1            now add 4 to the inequality; 

                                                 3 < 𝑥 + 2 < 5 ;           now square the inequality;  

                                           9 < (𝑥 + 2)2 < 25 ;          So now we can say that 

                                                                                                   if 𝛿 ≤ 1 then: 

                   (𝑥 + 2)2(𝑥 − 2)2 < 25(𝑥 − 2)2.  
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So if we can force the RHS to be less than 
−1

𝑀
 we’ll be in business. 

          25(𝑥 − 2)2 <
−1

𝑀
  

                (𝑥 − 2)2 <
−1

25𝑀
  

                    |𝑥 − 2| < √
−1

25𝑀
      (Note: since 𝑀 < 0,    

−1

25𝑀
 is a positive number).  

 

So choose 𝛿 = min (1, √
−1

25𝑀
  ) 

Now let’s show this 𝛿 works: 

If   0 < |𝑥 − 2| < 𝛿 = min (1, √
−1

25𝑀
 )  then we have: 

(𝑥2 − 4)2 ≤ 25(𝑥 − 2)2                                                      since 𝛿 ≤ 1. 

(𝑥2 − 4)2 ≤ 25(𝑥 − 2)2 < 25𝛿2 ≤ 25 (
−1

25𝑀
) =

−1

𝑀
       since 𝛿 ≤ √

−1

25𝑀
  . 

⇒        
1

(𝑥2−4)2 > −𝑀    since both sides are positive;  Now multiply by -1 

            
−1

(𝑥2−4)2 < 𝑀.     

 

Hence we have shown:    lim
𝑥→2

−1

(𝑥2−4)2 = −∞. 
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Def.  Let 𝑓: ℝ → ℝ.  𝐥𝐢𝐦
𝒙→∞

𝒇(𝒙) = +∞ means for every 𝑀 > 0 there exists an 𝑁 

such that if 𝑥 > 𝑁 then 𝑓(𝑥) > 𝑀.  

 

 

 

 

 

 

 

 

𝐥𝐢𝐦
𝒙→∞

𝒇(𝒙) = −∞ means for every 𝑀 < 0 there exists an 𝑁 such that if  

𝑥 > 𝑁 then 𝑓(𝑥) < 𝑀. 

 

 

 

 

 

 

 

   

The definitions of 𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = +∞ and 𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = −∞ are similar except that 

𝑥 < 𝑁. 

𝑀 

𝑦 = 𝑓(𝑥) 

𝑁 

𝑥 

𝑦 

𝑀 

𝑁 

𝑦 = 𝑓(𝑥) 

𝑥 𝑦 
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Ex.  Prove that   lim
𝑥→∞

(𝑥2 − 2𝑥) = +∞. 

 

We must show that given any 𝑀 > 0, we can find an 𝑁 such that if 𝑥 > 𝑁 then 

𝑓(𝑥) = 𝑥2 − 2𝑥 > 𝑀. 

Notice that 𝑥2 − 2𝑥 = 𝑥(𝑥 − 2)  

So if we choose 𝑁 = 𝑀 + 2 then we have if 𝑥 > 𝑁: 

𝑥(𝑥 − 2) > (𝑀 + 2)𝑀 = 𝑀2 + 2𝑀 > 𝑀  since 𝑀2 + 𝑀 > 0                             

                                                                                          because 𝑀 > 0. 

 

Thus we have shown   lim
𝑥→∞

(𝑥2 − 2𝑥) = +∞. 

 

Def.  Let 𝑓: ℝ → ℝ.  𝐥𝐢𝐦
𝒙→∞

𝒇(𝒙) = 𝑳 means given any 𝜖 > 0 there exists an 𝑁 such 

that if 𝑥 > 𝑁 then |𝑓(𝑥) − 𝐿| < 𝜖. 

 

 

 

 

 

 

 

 

 

𝐿 

𝐿 + 𝜖 

𝐿 − 𝜖 

𝑦 = 𝑓(𝑥) 

𝑁 
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𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = 𝑳 means given any 𝜖 > 0 there exists an 𝑁 such that if 𝑥 < 𝑁 then 

|𝑓(𝑥) − 𝐿| < 𝜖. 

 

 

 

 

 

 

 

 

 

Ex.   Prove  lim
𝑥→−∞

1

𝑥+2
= 0. 

 

We must show given any 𝜖 > 0 there exists an 𝑁 such that if 𝑥 < 𝑁 then 

 |
1

𝑥+2
− 0| < 𝜖.  

 

Start with the 𝜖 statement and work backwards toward the 𝑁 statement. 

|
1

𝑥+2
− 0| = |

1

𝑥+2
| < 𝜖.  

  

If we choose 𝑁 ≤ −2 then 
1

𝑥+2
< 0 for all 𝑥 < 𝑁. 

𝐿 

𝐿 + 𝜖 

𝐿 − 𝜖 

𝑦 = 𝑓(𝑥) 

𝑁 
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Thus in that case:  |
1

𝑥+2
| =

−1

𝑥+2
 . 

Thus we want to force     
−1

𝑥+2
 < 𝜖.       

 

Now solve this inequality for 𝑥. 

     
1

𝑥+2
> −𝜖  

𝑥 + 2 <
−1

𝜖
     

        𝑥 <
−1

𝜖
− 2 .   

 

Choose 𝑁 =
−1

𝜖
− 2   (which is also less than -2). 

 

Let’s show that this 𝑁 works. 

If 𝑥 < 𝑁 =
−1
𝜖

− 2    then  

𝑥 + 2 <
−1
𝜖

  

     
1

𝑥+2
 > −𝜖                since both sides are negative 

     
−1

𝑥+2
< 𝜖 ;                  and since 𝑥 + 2 < 0, we have: 

|
1

𝑥+2
− 0| = |

1

𝑥+2
| < 𝜖 . 

Thus we have shown:   lim
𝑥→−∞

1

𝑥+2
= 0. 
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Ex.  Prove lim
𝑥→∞

𝑒
1

𝑥 = 1.   

 

We must show that given any 𝜖 > 0 there exists an 𝑁 such that if 𝑥 > 𝑁 then 

|𝑒
1

𝑥 − 1| < 𝜖.    

 

As usual, we start with the 𝜖 statement and work backwards toward the 𝑁 

statement. 

Let’s start by choosing 𝑁 > 0 (the domain of the function doesn’t include 𝑥 = 0 

anyway).  Thus   
1

𝑥
> 0   and    𝑒

1

𝑥 − 1 > 0. 

That means that  |𝑒
1

𝑥 − 1| = 𝑒
1

𝑥 − 1 < 𝜖;      let’s solve this inequality for 𝑥. 

                                       𝑒
1

𝑥 < 𝜖 + 1            Now take natural logs of both sides 

                                         
1

𝑥
< ln (1 + 𝜖) 

                                         𝑥 >
1

ln(1+𝜖)
 ,          Since both 

1

𝑥
> 0 and ln(1 + 𝜖) > 0. 

Choose  𝑁 =
1

ln(1+𝜖)
 . 

Let’s show that this 𝑁 works by using the above steps in reverse: 

If 𝑥 > 𝑁 =
1

ln(1+𝜖)
  then   𝑥 >

1

ln(1+𝜖)
  

                                                 
1

𝑥
< ln (1 + 𝜖)  

                                            𝑒
1

𝑥 < 𝜖 + 1  

               |𝑒
1

𝑥 − 1| = 𝑒
1

𝑥 − 1 < 𝜖.              Thus  lim
𝑥→∞

𝑒
1

𝑥 = 1. 


