Limits of Functions

Def. Let X and Y be metric spaces; suppose E € X, f:E — Y, andpisalimit
pointof E. We write: f(x) - q asx — p or lim f(x) = q, ifthereisa
X-p

point geY such that for every € > 0 there existsa & > 0 such that if for all xeE
forwhich: 0 < dy(x,p) < § then dy(f(x),q) < €. Y

FNS@D, o000,

For X =Y = R this definition says that f(x) - L asx — a or

lim f(x) = L, means that for all € > 0 there exists a & > 0 such that if
xX—a

0<|x—al<é then |[f(x) —L| <e.
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Notice that the definition of a limit of a function as x goes to p does NOT depend
on the value of the function at x = p. In fact, a function can have a limit as x goes
to p without the function even being defined at x = p.

To prove that lim f(x) = g, we are going to need to show we can finda § > 0
X—p

that satisfies the conditions in the definition of lim f(x) = g,. In general, § will
X—p

depend on the value of € (i.e., & will be a function of €) and will depend on the

point p.

2_
Ex. Let f(x) = 3;_3 forx #3  (f(x)is not defined at x = 3). Prove that
lim f(x) = 6.
x—3 x2-9 ‘
flx) = = for x ¢3
o |
0 4 L

By the definition of a limit given earlier, we must show that given any € > 0, we
canfindad > 0 suchthatif0 < [x — 3| < § then |f(x) — 6] < €.

As with proving the limit of a sequence, we start with the € statement and work
backwards to see what 6 will work. Here we want to get the § statement to
appear.



x2-9

. (x—=3)(x+3) .
x—3

x—3

6|=|x+3—-6|=|x—3|<e.

6| =

But |x — 3] is exactly what & controls,i.e., 0 < |[x — 3| < §.

Sojustletd = €.

Now let’s see that this works.
0 < |x—3| <8 meansthatsinced = €

|x — 3] < € (we now work our algebra in reverse to get the € statement)

2_ _
x 9—6|= W—6|=|x+3—6|=|x—3|<e.
x-3 x—3
2_
Soif 0 < |x —3| <6 then|3;_39—6|<6.

Thus we have proved: lirrglj f(x) =6.
X—

Ex. Let f(x) = x? if x # 2 o
=1 if x=2 flx) =x% if x # 2
Prove Li_r)r%f(x)zél. —1 if x=2
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We must show that given any € > 0, we canfinda d > 0 such that if
0< |x—2] <38 then [f(x) — 4| <e.
Let’s start with the € statement and work backwards until the § statement appears.
Forx # 2, f(x) = x2. So the € statement is:
|x2 — 4| <€

X2 — 4| = |(x + 2)(x — 2)| = |x + 2]|x = 2].
x — 2| is part of the § statement, but what do we do about the factor |x .
2 fthe & but what do we do about the factor |x + 2|?

Noticethatifd < 1,ie, 1 <x <3, then3<x+2<50r |x+2|<5.

Soif§ < 1,then |x2 —4| = |x+ 2||x — 2] <5|x — 2|.

Thus, If we can ensure that 5|x — 2| < €, then |x? — 4| < €.

Equivalently, if we can ensure that |x — 2| < § then |x? — 4| < e.

So choose § = min (1,%).

Let’s show that this § works, i.e., thatif 0 < |x — 2| < § then |x? — 4| < €.
0 < |x—2] <6=min(1,§)

|x%2 — 4| = |x + 2]||x = 2]; since 6 < 1 we know that |x + 2| < 5, so

x2—4| = |x+2||x = 2| <5|x=2|; sinced sgwe have:

|x2—4|=|x+2||x—2|<5|x—2|<55S5(§)=e.

So we have proved that lirr% f(x) = 4.
X—



Ex. Let f(x) = x3+ x, prove lirg f(x) = 10.
X—
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We must show that given any € > 0, we can finda § > 0 such that if

0<|x—2] <8 then |x3+x — 10| < €.

By dividing (x — 2) into x> + x — 10 we get
x3+x—10=(x —2)(x*> + 2x + 5) sowe have:

|x3 +x — 10| = |x — 2||x? + 2x + 5|.

So, once again, we have the § statement popping out. The problem is, what do
we do about |x? + 2x + 5|? We again use the trick of limiting § < 1 and ask
how big |x2 + 2x + 5| could possibly be?



Since d <1, ie, 1 < x < 3, weknow |x| < 3. By the triangle inequality:

|x? + 2x + 5| < |x?| + 2|x]| +5<9+ 6 + 5 = 20.

So we have:
|x3 +x — 10| = |x — 2||x? + 2x + 5| < 20|x — 2|.
Now if we can choose a & such that [x3 + x — 10| < 20|x — 2| < €

€
We'll be effectively done. But this is equivalent to: |x — 2| < 20"

_ €
So let’s choose 6 = min (1, 2—0)

Let’s show that this delta works (if 0 < |x — 2| < & then |x3 +x — 10| < ¢).
If § = min (1, 2—60) we have:

|x3 +x — 10| = |x — 2||x? + 2x + 5|; butsince § < 1 we know that:
%3 +x — 10] = |x — 2[Ix? + 2x + 5| < 20]x — 2|; Since § < -
1x3 + x — 10| < 20|x — 2| <205320(§) -

So we have proved that lirr% f(x) = 10.
X—
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Ex. Prove lim- = 1. A
x—1Xx 21

We must show that given any € > 0, we can finda § > 0 such that if

0<|x—1| <& then |§—1|<e.

We start with the € statement and work backwards.

1 1 X
i-1)= -
X

|1—x
X X

= = e-11
X

X

1
Now we need an upper bound on | - |.

NOTICE, we can’t just let 6 < 1. Because if we let & = 1 then

0 < |x—1] < 8 =1, means x can be VERY close to 0 and hence

1
o won’t have an upper bound.



However, there’s nothing magical about letting § < 1 (it just tends to be easy to

work with). We just want to make sure X stays away from 0, so choose

1
6 < > (or any number less than 1 and greater than 0).
1
This means that: |[x — 1] < E
1 1 .
—3 <x—1< 3 (now add 1 to all quantities)

1 3 . .
> <x< 3 (now take reciprocals since

all terms have same sign)

So:

So if SS%we have:
1 1—x 1
|——1|=|—|=|—||x—1|<2|x—1|<e.
x x x
2|x — 1] < €is equivalentto |[x — 1| < g

.1 €
So choose § = min (E’E)'

Now let’s show this § works:

1-x

X

1 X

X X

t-1)-

1
= |;| |x — 1] < 2]x — 1| since 5S%.

<25S2(§)=€ SinceSSE.

. 1
Solim-=1.
x->1X
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Ex. Prove il_l)% Vx = 0. | yl=3x

We must show that given any € > 0, we can finda § > 0 such that if
0<|x—0] <8 then |3x—0| <€

Or, equivalently, if 0 < |x| < § then |i/§| <E€.

So we need: |§/}| = 3|x|<€e or |x| < €°.

Choose § = €°.

Now let’s show that this § works:
0 < |x| <& meansthat |x| < § = € orequivalently: |§/§| <e€
This is algebraically the same as: |§/§ — 0| < E.

So we have shown that lir% Vx = 0.
X—
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Ex. Provethat lim (2x3 —y?) =0.
(x,y)—(0,0) ‘
5

l
&

We must show that given any € > 0, we can finda § > 0 such that if

0 < d((x,¥),(0,0)) <& then[2x3 —y% — 0| < €.

ie. if 0<(x—0)2+4(y—0)2=,x2+y2<3§ then|2x3 —y?| <e.

Let’s start with the € statement and work backards toward the § statement.

Using the triangle inequality we have:

1223 — y2| < 12x3] + |y?] = 2]x|® + |y|?

Since /X2 + y2 < § wehave x| < /x2+y2 < Sand|y| < x2+7y2<86.



11

Now choose d < 1,s0|x|] <d <1 and |y| <6 < 1.

Notice that [x|? < |x| and |y|?> < |y|since |x] < 1and|y| < 1, Sowe
have:

12x3 —y2| < 2|x|? + |y|? < 2|x| + |y| <26 + 6 = 36.
So we need to force

|2x3 — y?| < 36 < e.

ord <=,
3

Choose § = min (l,g).

Now let’s show that this & works.

If0 < /x2+y? <§ then:
12x3 — y?| < 23] + |y?| = 2|x|® + |y|*; so

12x3 —y% — 0] < 2|x|3 + |y]|? < 2|x| + |y| because § < 1.

Since{/x2 +y2 <6 = |x| <6 and |y| <6, we have:

12x3 —y?2 = 0| < 2|x| + |yl <36 < 3(5) = €. becaused <

wilm

Thus we have shown that  lim  (2x3 — y?) = 0.
(x,y)—(0,0)



Theorem (Squeeze theorem): If h(x) < f(x) < g(x) for xe(a, b), except
possibly at ce(a, b), and if lim h(x) = lim g(x) =L, then lim f(x) exists and
X—C X—C X—C

equals L.
y=g(x)/
T BN i
/} ' ! | y_f(x)
> / y = h(x) \ M~
Proof: | c \

Given any € > 0 we need to show that there existsa § > 0 such that if

0<|x—c| <& then |f(x) —L| <e.

Since lim h(x) = lim g(x) = L we know that given any € > 0 there exists a
X—C X—C

61 > 0anda 6, > 0 such thatif:
0<|x—c|<d; then |h(x) —L| <€

0<|x—c| <, then |g(x) —L| < €.

Let’s let 6 = min (81, 65).
Thusif 0 < |x — c| < & then we know both:

|lh(x) —L|<e and |g(x)—L|<e.



Or equivalently:

—e<h(x)—L<e and —e<g(x)—L<e.

In particular, we know thatif 0 < |x — c| < & then:
—e<h(x)—L and gx)—L<e or

L—¢€ < h(x) and gx)<L+e.

But by assumption h(x) < f(x) < g(x) so we have:
L—e<h(x)<f(x)<glx)<L+e
L—e<f(x)<L+e which is the same as:
If(x) —Ll<e if0<]|x—c|<$é

So we have shown that lim f(x) = L.
X—C
: .1
Ex. Prove lim xsin(=) = 0.
x—0 x

Since |Sin(i)| <1 wehavethat 0 Slxsin(§)| < |x|
Nowleth(x) = 0, f(x) = |xsin()], g(x) = x|

. . . . 1
Since lim [x| = 0 and lim 0 = 0, we know that lim |xsin (—) | = 0.
x—0 x—0 x—0 x
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From an earlier HW problem we know that for a sequence {a,}, lim a, = 0 if
n—oo

and only if lim |a,| = 0. Itis also true for limits of functions:
n—->00

lim f(x) = Oifanonlyiflim |f(x)| = 0.
X—C

X—=C
) . (1
Thus lim xsin (—) = 0.

x—0 X

Theorem: Let X,Y be metric spaces with f: E € X — Y, with p a limit point of E
and geY, then lim f(x) = q ifand only if lim f(x,) = q for every sequence
X-p n—oo

{x,} € E such that x,, # p and 1111_r>£10 Xp =D.

Proof: Assume lim f(x) = g and we will show that given any sequence
X—p

{x,} € E suchthatx,, # p and lim x,, = p, that lim f(x,) = q.
n—-0o n—>0o
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Let € > 0 be given. By definition of lim f(x) = q, there existsa & > 0 such
X—=>p

thatif xeE and 0 < dy(x,p) < § then dy(f(x),q) < €.

Since lim x,, = p, by definition, there exists an N such that if n = N then

n—->0o

0 < dy(x,,p) <& (for the above 9).

Soforn = N, 0 < dy(x,,p) <6, anddy(f(x,),q) <¢€

Thus lim f(x,) = q.
n—oo

Now we assume that lim f(x,) = q for every sequence {x,,} € E such that
n—oo

X, # p and lim x,, = p and show that lim f(x) = gq.
n—oo xX-p

We will do this with a proof through contradiction.

Let’s assume that the conclusion is false, ie that lim f(x) # q.
X—p

Then there exists some € > 0 such that for every § > 0 there exists a point xeE
(that depends on &) for which dy (f(x),q) = €, but 0 < dy(x,p) <& .

1
Take 6,, = o n= 1,2,3..
For each &, there exists some point x,, with dy (f (x,), q) = €.

But then lim f(x,) # q which contradicts our assumption that lim f(x,) = q.
xX-p n—oo

So lim f(x) = q.

X—=p
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Def. f,g:X = R, X ametric space. Then:
L (Ft9)@) =fx)+gk)
2. (fgx) =flx)gx)
3. g(x)z%; gx)+0
f,9:X > Rk
1. (ftg9)(x)=f(x)+g(x) (vectoraddition/subtraction)

2. (f-g9)x)=f(x)-gx) (dot product of vectors)
3. (Af)(x) = Af (x) (scalar multiplication, A€R).

Theorem: Suppose E € X a metric space, p a limit pointof E,and f, g: E = R
with lim f(x) = A and lim g(x) = B, then:
X—p

X—p

a. }Cigrll)(fig)(x) =AxB

b. lim fg(x) =AB

X—-p

f oy AL
C. }Cl_r)rzljg (x)—B, if B+ 0.

Proof. All 3 follow from the previous theorem and the analogous theorem for
sequences.



