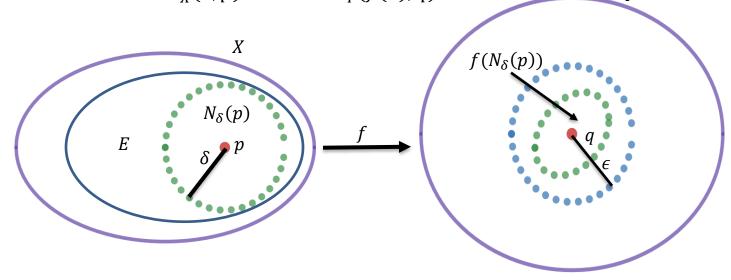
Limits of Functions

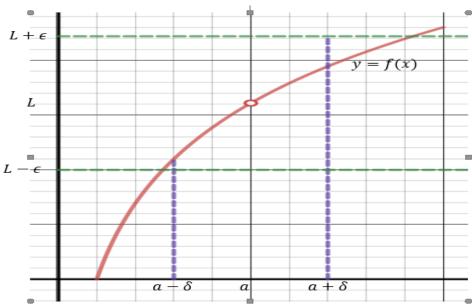
Def. Let X and Y be metric spaces; suppose $E \subseteq X$, $f: E \to Y$, and p is a limit point of E. We write: $f(x) \to q$ as $x \to p$ or $\lim_{x \to p} f(x) = q$, if there is a point $q \in Y$ such that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if for all $x \in E$ for which: $0 < d_X(x,p) < \delta$ then $d_Y(f(x),q) < \epsilon$.



For $X = Y = \mathbb{R}$ this definition says that $f(x) \to L$ as $x \to a$ or

 $\lim_{x \to a} f(x) = L$, means that for all $\epsilon > 0$ there exists a $\delta > 0$ such that if

 $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.



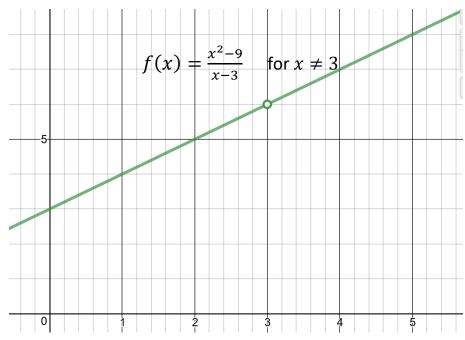
Notice that the definition of a limit of a function as x goes to p does NOT depend on the value of the function at x = p. In fact, a function can have a limit as x goes to p without the function even being defined at x = p.

To prove that $\lim_{x\to p}f(x)=q$, we are going to need to show we can find a $\delta>0$ that satisfies the conditions in the definition of $\lim_{x\to p}f(x)=q$. In general, δ will depend on the value of ϵ (i.e., δ will be a function of ϵ) and will depend on the point p.

Ex. Let
$$f(x) = \frac{x^2 - 9}{x - 3}$$
 for $x \neq 3$

for $x \neq 3$ (f(x)) is not defined at x = 3). Prove that

$$\lim_{x \to 3} f(x) = 6.$$



By the definition of a limit given earlier, we must show that given any $\epsilon > 0$, we can find a $\delta > 0$ such that if $0 < |x - 3| < \delta$ then $|f(x) - 6| < \epsilon$.

As with proving the limit of a sequence, we start with the ϵ statement and work backwards to see what δ will work. Here we want to get the δ statement to appear.

$$\left| \frac{x^2 - 9}{x - 3} - 6 \right| = \left| \frac{(x - 3)(x + 3)}{x - 3} - 6 \right| = |x + 3 - 6| = |x - 3| < \epsilon.$$

But |x-3| is exactly what δ controls, i.e., $0<|x-3|<\delta$.

So just let $\delta = \epsilon$.

Now let's see that this works.

 $0<|x-3|<\delta$ means that since $\delta=\epsilon$

 $|x-3|<\epsilon$ (we now work our algebra in reverse to get the ϵ statement)

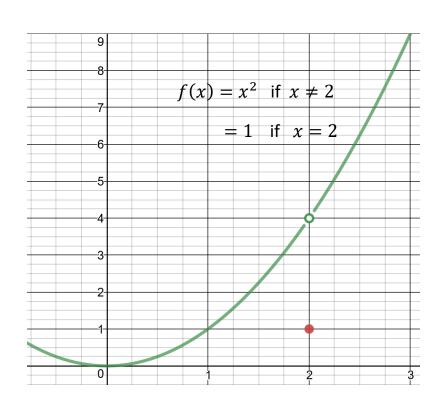
$$\left| \frac{x^2 - 9}{x - 3} - 6 \right| = \left| \frac{(x - 3)(x + 3)}{x - 3} - 6 \right| = |x + 3 - 6| = |x - 3| < \epsilon.$$

So if
$$0 < |x-3| < \delta$$
 then $\left| \frac{x^2-9}{x-3} - 6 \right| < \epsilon$.

Thus we have proved: $\lim_{x\to 3} f(x) = 6$.

Ex. Let
$$f(x) = x^2$$
 if $x \neq 2$
= 1 if $x = 2$

Prove $\lim_{x\to 2} f(x) = 4$.



We must show that given any $\epsilon>0$, we can find a $\delta>0$ such that if

$$0<|x-2|<\delta \text{ then } |f(x)-4|<\epsilon.$$

Let's start with the ϵ statement and work backwards until the δ statement appears.

For $x \neq 2$, $f(x) = x^2$. So the ϵ statement is:

$$|x^2 - 4| < \epsilon$$

$$|x^2 - 4| = |(x + 2)(x - 2)| = |x + 2||x - 2|.$$

|x-2| is part of the δ statement, but what do we do about the factor |x+2|?

Notice that if $\delta \le 1$, ie, 1 < x < 3, then 3 < x + 2 < 5 or |x + 2| < 5. So if $\delta \le 1$, then $|x^2 - 4| = |x + 2||x - 2| < 5|x - 2|$.

Thus, If we can ensure that $5|x-2| < \epsilon$, then $|x^2-4| < \epsilon$.

Equivalently, if we can ensure that $|x-2|<\frac{\epsilon}{5}$ then $|x^2-4|<\epsilon$.

So choose $\delta = \min(1, \frac{\epsilon}{5})$.

Let's show that this δ works, i.e., that if $0<|x-2|<\delta$ then $|x^2-4|<\epsilon$.

$$0 < |x - 2| < \delta = \min\left(1, \frac{\epsilon}{5}\right)$$

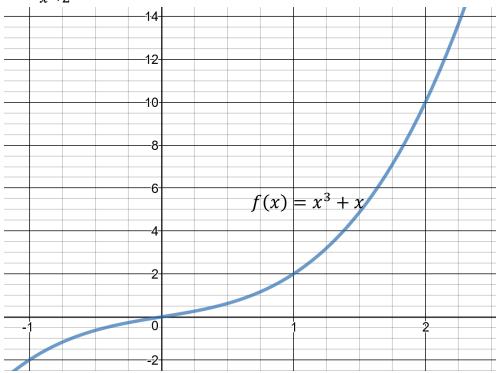
$$|x^2 - 4| = |x + 2||x - 2|;$$
 since $\delta \le 1$ we know that $|x + 2| < 5$, so

$$|x^2 - 4| = |x + 2||x - 2| < 5|x - 2|$$
; since $\delta \le \frac{\epsilon}{5}$ we have:

$$|x^2 - 4| = |x + 2||x - 2| < 5|x - 2| < 5\delta \le 5\left(\frac{\epsilon}{5}\right) = \epsilon.$$

So we have proved that $\lim_{x\to 2} f(x) = 4$.

Ex. Let
$$f(x) = x^3 + x$$
, prove $\lim_{x \to 2} f(x) = 10$.



We must show that given any $\epsilon > 0$, we can find a $\delta > 0$ such that if

$$0 < |x - 2| < \delta$$
 then $|x^3 + x - 10| < \epsilon$.

By dividing
$$(x - 2)$$
 into $x^3 + x - 10$ we get

$$x^3 + x - 10 = (x - 2)(x^2 + 2x + 5)$$
 so we have:

$$|x^3 + x - 10| = |x - 2||x^2 + 2x + 5|.$$

So, once again, we have the δ statement popping out. The problem is, what do we do about $|x^2+2x+5|$? We again use the trick of limiting $\delta \leq 1$ and ask how big $|x^2+2x+5|$ could possibly be?

Since $\delta \le 1$, ie, 1 < x < 3, we know |x| < 3. By the triangle inequality:

$$|x^2 + 2x + 5| \le |x^2| + 2|x| + 5 < 9 + 6 + 5 = 20.$$

So we have:

$$|x^3 + x - 10| = |x - 2||x^2 + 2x + 5| < 20|x - 2|.$$

Now if we can choose a δ such that $|x^3+x-10|<20|x-2|<\epsilon$

We'll be effectively done. But this is equivalent to: $|x-2| < \frac{\epsilon}{20}$.

So let's choose $\delta = \min(1, \frac{\epsilon}{20})$.

Let's show that this delta works (if $0<|x-2|<\delta$ then $|x^3+x-10|<\epsilon$).

If
$$\delta = \min(1, \frac{\epsilon}{20})$$
 we have:

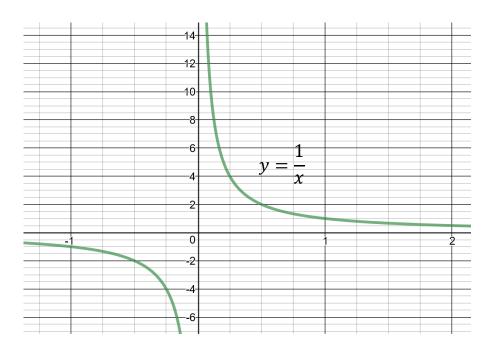
$$|x^3 + x - 10| = |x - 2||x^2 + 2x + 5|$$
; but since $\delta \le 1$ we know that:

$$|x^3 + x - 10| = |x - 2||x^2 + 2x + 5| < 20|x - 2|$$
; Since $\delta \le \frac{\epsilon}{20}$:

$$|x^3 + x - 10| < 20|x - 2| < 20\delta \le 20\left(\frac{\epsilon}{20}\right) = \epsilon.$$

So we have proved that $\lim_{x\to 2} f(x) = 10$.

Ex. Prove $\lim_{x\to 1} \frac{1}{x} = 1$.



We must show that given any $\epsilon>0$, we can find a $\delta>0$ such that if

$$0 < |x-1| < \delta$$
 then $\left|\frac{1}{x} - 1\right| < \epsilon$.

We start with the ϵ statement and work backwards.

$$\left|\frac{1}{x}-1\right| = \left|\frac{1}{x}-\frac{x}{x}\right| = \left|\frac{1-x}{x}\right| = \left|\frac{1}{x}\right| |x-1|.$$

Now we need an upper bound on $\left|\frac{1}{x}\right|$.

NOTICE, we can't just let $\delta \leq 1$. Because if we let $\delta = 1$ then

 $0<|x-1|<\delta=1$, means x can be VERY close to 0 and hence

 $\frac{1}{r}$ won't have an upper bound.

However, there's nothing magical about letting $\delta \leq 1$ (it just tends to be easy to work with). We just want to make sure x stays away from 0, so choose

 $\delta \leq \frac{1}{2}$ (or any number less than 1 and greater than 0).

$$2 > \frac{1}{x} > \frac{2}{3}$$

$$\left| \frac{1}{x} \right| < 2 \quad \text{if} \quad \delta \le \frac{1}{2}.$$

So:

So if $\delta \leq \frac{1}{2}$ we have:

$$\left| \frac{1}{x} - 1 \right| = \left| \frac{1 - x}{x} \right| = \left| \frac{1}{x} \right| |x - 1| < 2|x - 1| < \epsilon.$$

 $2|x-1| < \epsilon$ is equivalent to $|x-1| < \frac{\epsilon}{2}$.

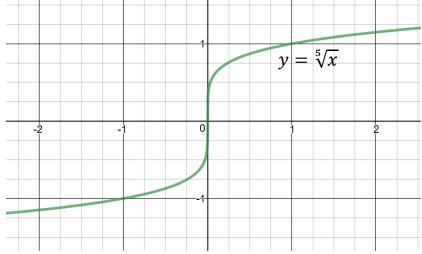
So choose $\delta = min(\frac{1}{2}, \frac{\epsilon}{2})$.

Now let's show this δ works:

$$\left|\frac{1}{x}-1\right|=\left|\frac{1}{x}-\frac{x}{x}\right|=\left|\frac{1-x}{x}\right|=\left|\frac{1}{x}\right|\left|x-1\right|<2\left|x-1\right| \quad \text{Since } \delta\leq\frac{1}{2}\,.$$

$$<2\delta\leq2\left(\frac{\epsilon}{2}\right)=\epsilon \qquad \qquad \text{Since } \delta\leq\frac{\epsilon}{2}\,.$$
 So $\lim_{x\to1}\frac{1}{x}=1.$

Ex. Prove $\lim_{x\to 0} \sqrt[5]{x} = 0$.



We must show that given any $\epsilon > 0$, we can find a $\delta > 0$ such that if

$$0 < |x - 0| < \delta$$
 then $\left| \sqrt[5]{x} - 0 \right| < \epsilon$.

Or, equivalently, if $0<|x|<\delta$ then $\left|\sqrt[5]{x}\right|<\epsilon$.

So we need: $\left| \sqrt[5]{x} \right| = \sqrt[5]{|x|} < \epsilon$ or $|x| < \epsilon^5$.

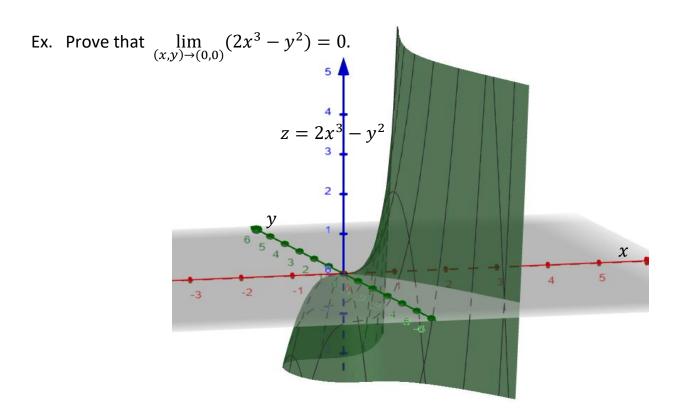
Choose $\delta = \epsilon^5$.

Now let's show that this δ works:

 $0<|x|<\delta$ means that $|x|<\delta=\epsilon^5$ or equivalently: $\left|\sqrt[5]{x}\right|<\epsilon$

This is algebraically the same as: $\left|\sqrt[5]{x} - 0\right| < \epsilon$.

So we have shown that $\lim_{x\to 0} \sqrt[5]{x} = 0$.



We must show that given any $\epsilon>0$, we can find a $\delta>0$ such that if

$$0 < d((x,y),(0,0)) < \delta$$
 then $|2x^3 - y^2 - 0| < \epsilon$.

i.e. if
$$0 < \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2} < \delta$$
 then $|2x^3 - y^2| < \epsilon$.

Let's start with the ϵ statement and work backards toward the δ statement.

Using the triangle inequality we have:

$$|2x^3 - y^2| \le |2x^3| + |y^2| = 2|x|^3 + |y|^2$$

Since
$$\sqrt{x^2+y^2}<\delta$$
 we have $|x|<\sqrt{x^2+y^2}<\delta$ and $|y|<\sqrt{x^2+y^2}<\delta$.

Now choose $\delta \leq 1$, so $|x| < \delta \leq 1$ and $|y| < \delta \leq 1$.

Notice that $|x|^3 < |x|$ and $|y|^2 < |y|$ since |x| < 1 and |y| < 1, So we have:

$$|2x^3 - y^2| \le 2|x|^3 + |y|^2 < 2|x| + |y| < 2\delta + \delta = 3\delta.$$

So we need to force

$$|2x^3 - y^2| < 3\delta < \epsilon.$$

Or
$$\delta < \frac{\epsilon}{3}$$
.

Choose $\delta = \min(1, \frac{\epsilon}{3})$.

Now let's show that this δ works.

If
$$0 < \sqrt{x^2 + y^2} < \delta$$
 then:

$$|2x^3 - y^2| \le |2x^3| + |y^2| = 2|x|^3 + |y|^2$$
; so $|2x^3 - y^2 - 0| \le 2|x|^3 + |y|^2 < 2|x| + |y|$ because $\delta \le 1$.

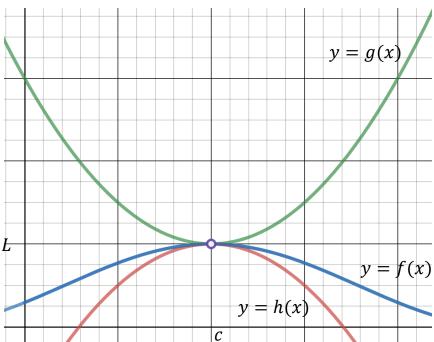
Since
$$\sqrt{x^2 + y^2} < \delta \Rightarrow |x| < \delta$$
 and $|y| < \delta$, we have:

$$|2x^3 - y^2 - 0| < 2|x| + |y| < 3\delta \le 3\left(\frac{\epsilon}{3}\right) = \epsilon$$
. because $\delta \le \frac{\epsilon}{3}$.

Thus we have shown that $\lim_{(x,y)\to(0,0)}(2x^3-y^2)=0$.

Theorem (Squeeze theorem): If $h(x) \le f(x) \le g(x)$ for $x \in (a,b)$, except possibly at $c \in (a,b)$, and if $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) = L$, then $\lim_{x \to c} f(x)$ exists and

equals L.



Proof:

Given any $\epsilon>0$ we need to show that there exists a $\delta>0$ $% (\delta)=0$ such that if

$$0 < |x - c| < \delta$$
 then $|f(x) - L| < \epsilon$.

Since $\lim_{x\to c}h(x)=\lim_{x\to c}g(x)=L$ we know that given any $\epsilon>0$ there exists a

 $\delta_1>0$ and a $\,\delta_2>0$ such that if:

$$0 < |x - c| < \delta_1$$
 then $|h(x) - L| < \epsilon$

$$0 < |x - c| < \delta_2$$
 then $|g(x) - L| < \epsilon$.

Let's let $\delta = \min(\delta_1, \delta_2)$.

Thus if $0 < |x - c| < \delta$ then we know both:

$$|h(x) - L| < \epsilon$$
 and $|g(x) - L| < \epsilon$.

Or equivalently:

$$-\epsilon < h(x) - L < \epsilon$$
 and $-\epsilon < g(x) - L < \epsilon$.

In particular, we know that if $0<|x-c|<\delta$ then:

$$-\epsilon < h(x) - L$$
 and $g(x) - L < \epsilon$ or $L - \epsilon < h(x)$ and $g(x) < L + \epsilon$.

But by assumption $h(x) \le f(x) \le g(x)$ so we have:

$$L-\epsilon < h(x) \le f(x) \le g(x) < L+\epsilon$$

$$L-\epsilon < f(x) < L+\epsilon \qquad \text{which is the same as:}$$

$$|f(x)-L| < \epsilon \quad \text{if } 0 < |x-c| < \delta$$

So we have shown that $\lim_{x\to c} f(x) = L$.

Ex. Prove $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$.

Since
$$|\sin(\frac{1}{x})| \le 1$$
 we have that $0 \le |x\sin(\frac{1}{x})| \le |x|$

Now let
$$h(x) = 0$$
, $f(x) = |x\sin(\frac{1}{x})|$, $g(x) = |x|$

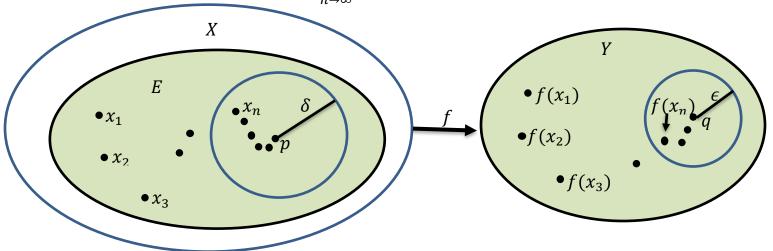
Since
$$\lim_{x\to 0} |x| = 0$$
 and $\lim_{x\to 0} 0 = 0$, we know that $\lim_{x\to 0} |x\sin\left(\frac{1}{x}\right)| = 0$.

From an earlier HW problem we know that for a sequence $\{a_n\}$, $\lim_{n\to\infty}a_n=0$ if and only if $\lim_{n\to\infty}|a_n|=0$. It is also true for limits of functions:

$$\lim_{x\to c} f(x) = 0 \text{ if an only if } \lim_{x\to c} |f(x)| = 0.$$

Thus
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$$
.

Theorem: Let X,Y be metric spaces with $f\colon E\subseteq X\to Y$, with p a limit point of E and $q\in Y$, then $\lim_{x\to p}f(x)=q$ if and only if $\lim_{n\to\infty}f(x_n)=q$ for every sequence $\{x_n\}\subseteq E$ such that $x_n\neq p$ and $\lim_{n\to\infty}x_n=p$.



Proof: Assume $\lim_{x\to p} f(x) = q$ and we will show that given any sequence $\{x_n\}\subseteq E$ such that $x_n\neq p$ and $\lim_{n\to\infty}x_n=p$, that $\lim_{n\to\infty}f(x_n)=q$.

Let $\epsilon>0$ be given. By definition of $\lim_{x\to p}f(x)=q$, there exists a $\delta>0$ such that if $x\epsilon E$ and $0< d_X(x,p)<\delta$ then $d_Y(f(x),q)<\epsilon$.

Since $\lim_{n\to\infty} x_n = p$, by definition, there exists an N such that if $n \ge N$ then $0 < d_X(x_n, p) < \delta$ (for the above δ).

So for
$$n \geq N$$
, $0 < d_X(x_n,p) < \delta$, and $d_Y(f(x_n),q) < \epsilon$ Thus $\lim_{n \to \infty} f(x_n) = q$.

Now we assume that $\lim_{n\to\infty} f(x_n)=q$ for every sequence $\{x_n\}\subseteq E$ such that $x_n\neq p$ and $\lim_{n\to\infty} x_n=p$ and show that $\lim_{x\to p} f(x)=q$.

We will do this with a proof through contradiction.

Let's assume that the conclusion is false, ie that $\lim_{x\to p} f(x) \neq q$.

Then there exists some $\epsilon > 0$ such that for every $\delta > 0$ there exists a point $x \in E$ (that depends on δ) for which $d_Y(f(x),q) \ge \epsilon$, but $0 < d_X(x,p) < \delta$.

Take
$$\delta_n = \frac{1}{n}$$
; $n = 1, 2, 3, ...$

For each δ_n there exists some point x_n with $d_Y(f(x_n), q) \ge \epsilon$.

But then $\lim_{x\to p} f(x_n) \neq q$ which contradicts our assumption that $\lim_{n\to\infty} f(x_n) = q$.

So
$$\lim_{x \to p} f(x) = q$$
.

Def. $f, g: X \to \mathbb{R}$, X a metric space. Then:

1.
$$(f \pm g)(x) = f(x) \pm g(x)$$

$$2. \quad (fg)(x) = f(x)g(x)$$

3.
$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}; \quad g(x) \neq 0$$

$$f,g:X\to\mathbb{R}^k$$

1.
$$(f \pm g)(x) = f(x) \pm g(x)$$
 (vector addition/subtraction)

2.
$$(f \cdot g)(x) = f(x) \cdot g(x)$$
 (dot product of vectors)

3.
$$(\lambda f)(x) = \lambda f(x)$$
 (scalar multiplication, $\lambda \in \mathbb{R}$).

Theorem: Suppose $E\subseteq X$ a metric space, p a limit point of E, and f, g: $E\to \mathbb{R}$ with $\lim_{x\to p}f(x)=A$ and $\lim_{x\to p}g(x)=B$, then:

a.
$$\lim_{x \to p} (f \pm g)(x) = A \pm B$$

b.
$$\lim_{x \to p} fg(x) = AB$$

c.
$$\lim_{x\to p} \frac{f}{g}(x) = \frac{A}{B}$$
; if $B \neq 0$.

Proof. All 3 follow from the previous theorem and the analogous theorem for sequences.