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                                                     Limits of Functions 

 

Def.  Let 𝑋 and 𝑌 be metric spaces;  suppose 𝐸 ⊆ 𝑋, 𝑓: 𝐸 → 𝑌,  and 𝑝 is a limit 

point of 𝐸.  We write:    𝒇(𝒙) → 𝒒  as 𝒙 → 𝒑  or  𝐥𝐢𝐦
𝒙→𝒑

𝒇(𝒙) = 𝒒,   if there is a 

point 𝑞𝜖𝑌 such that for every 𝜖 > 0 there exists a 𝛿 > 0 such that if for all 𝑥𝜖𝐸 

for which:     0 < 𝑑𝑋(𝑥, 𝑝) < 𝛿  then  𝑑𝑌(𝑓(𝑥), 𝑞) < 𝜖. 

 

                                                                                     

 

 

 

 

 

 For 𝑋 = 𝑌 = ℝ this definition says that 𝒇(𝒙) → 𝑳  as 𝒙 → 𝒂  or  

 𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = 𝑳,  means that for all 𝜖 > 0 there exists a 𝛿 > 0 such that if 

 0 < |𝑥 − 𝑎| < 𝛿  then  |𝑓(𝑥) − 𝐿| < 𝜖. 

 

 

 

 

 

𝑞 

𝜖 

𝑌 

𝑓(𝑁𝛿(𝑝)) 

 

𝑝 

𝑁𝛿(𝑝) 

𝛿 

𝑋 

𝑓 
𝐸 
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Notice that the definition of a limit of a function as 𝑥 goes to 𝑝 does NOT depend 

on the value of the function at 𝑥 = 𝑝.  In fact, a function can have a limit as 𝑥 goes 

to 𝑝 without the function even being defined at 𝑥 = 𝑝. 

To prove that lim
𝑥→𝑝

𝑓(𝑥) = 𝑞, we are going to need to show we can find a 𝛿 > 0 

that satisfies the conditions in the definition of lim
𝑥→𝑝

𝑓(𝑥) = 𝑞,.  In general, 𝛿 will 

depend on the value of 𝜖  (i.e.,  𝛿 will be a function of 𝜖) and will depend on the 

point 𝑝. 

 

Ex.  Let 𝑓(𝑥) =
𝑥2−9
𝑥−3

      for 𝑥 ≠ 3       (𝑓(𝑥) is not defined at 𝑥 = 3).  Prove that  

        lim
𝑥→3

𝑓(𝑥) = 6.  

 

 

 

 

 

 

 

 

 

By the definition of a limit given earlier, we must show that given any 𝜖 > 0, we 

can find a 𝛿 > 0  such that if 0 < |𝑥 − 3| < 𝛿  then  |𝑓(𝑥) − 6| < 𝜖. 

As with proving the limit of a sequence, we start with the 𝜖 statement and work 

backwards to see what 𝛿 will work.  Here we want to get the 𝛿 statement to 

appear. 

𝑓(𝑥) =
𝑥2−9

𝑥−3
      for 𝑥 ≠ 3        
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   |
𝑥2−9

𝑥−3
− 6| = |

(𝑥−3)(𝑥+3)

𝑥−3
− 6| = |𝑥 + 3 − 6| = |𝑥 − 3| < 𝜖.   

But |𝑥 − 3| is exactly what 𝛿 controls, i.e., 0 < |𝑥 − 3| < 𝛿. 

So just let 𝛿 = 𝜖. 

Now let’s see that this works. 

0 < |𝑥 − 3| < 𝛿  means that since 𝛿 = 𝜖  

|𝑥 − 3| < 𝜖     (we now work our algebra in reverse to get the 𝜖 statement) 

|
𝑥2−9

𝑥−3
− 6| = |

(𝑥−3)(𝑥+3)

𝑥−3
− 6| = |𝑥 + 3 − 6| = |𝑥 − 3| < 𝜖.   

So if 0 < |𝑥 − 3| < 𝛿  then |
𝑥2−9

𝑥−3
− 6| < 𝜖. 

Thus we have proved:  lim
𝑥→3

𝑓(𝑥) = 6.  

 

 

Ex.  Let 𝑓(𝑥) = 𝑥2   if  𝑥 ≠ 2 

                        = 1    if   𝑥 = 2 

Prove  lim
𝑥→2

𝑓(𝑥) = 4. 

 

 

 

 

 

 

 𝑓(𝑥) = 𝑥2   if  𝑥 ≠ 2 

            = 1    if   𝑥 = 2 
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We must show that given any 𝜖 > 0, we can find a 𝛿 > 0  such that if 

 0 < |𝑥 − 2| < 𝛿  then  |𝑓(𝑥) − 4| < 𝜖. 

Let’s start with the 𝜖 statement and work backwards until the 𝛿 statement appears. 

For 𝑥 ≠ 2,  𝑓(𝑥) = 𝑥2.  So the 𝜖 statement is: 

      |𝑥2 − 4| < 𝜖 

      |𝑥2 − 4| = |(𝑥 + 2)(𝑥 − 2)| = |𝑥 + 2||𝑥 − 2|.  

 

|𝑥 − 2| is part of the 𝛿 statement, but what do we do about the factor |𝑥 + 2|?  

 

Notice that if 𝛿 ≤ 1,  ie,  1 < 𝑥 < 3,  then  3 < 𝑥 + 2 < 5 or  |𝑥 + 2| < 5. 

So if 𝛿 ≤ 1, then  |𝑥2 − 4| = |𝑥 + 2||𝑥 − 2| < 5|𝑥 − 2|.  

 

Thus, If we can ensure that 5|𝑥 − 2| < 𝜖, then |𝑥2 − 4| < 𝜖. 

Equivalently,  if we can ensure that  |𝑥 − 2| <
𝜖

5
  then |𝑥2 − 4| < 𝜖. 

So choose 𝛿 = min (1,
𝜖

5
).  

Let’s show that this 𝛿 works, i.e., that if 0 < |𝑥 − 2| < 𝛿  then |𝑥2 − 4| < 𝜖. 

0 < |𝑥 − 2| < 𝛿 = min (1,
𝜖

5
)  

|𝑥2 − 4| = |𝑥 + 2||𝑥 − 2|;         since 𝛿 ≤ 1  we know that |𝑥 + 2| < 5, so  

|𝑥2 − 4| = |𝑥 + 2||𝑥 − 2| < 5|𝑥 − 2| ;    since 𝛿 ≤
𝜖

5
 we have: 

|𝑥2 − 4| = |𝑥 + 2||𝑥 − 2| < 5|𝑥 − 2| < 5𝛿 ≤ 5 (
𝜖

5
) = 𝜖.  

So we have proved that lim
𝑥→2

𝑓(𝑥) = 4. 
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Ex.   Let  𝑓(𝑥) = 𝑥3 + 𝑥,   prove lim
𝑥→2

𝑓(𝑥) = 10. 

 

 

 

 

 

 

 

 

 

 

We must show that given any 𝜖 > 0, we can find a 𝛿 > 0  such that if 

 0 < |𝑥 − 2| < 𝛿  then  |𝑥3 + 𝑥 − 10| < 𝜖. 

 

By dividing (𝑥 − 2) into 𝑥3 + 𝑥 − 10 we get   

𝑥3 + 𝑥 − 10 = (𝑥 − 2)(𝑥2 + 2𝑥 + 5)   so we have: 

|𝑥3 + 𝑥 − 10| = |𝑥 − 2||𝑥2 + 2𝑥 + 5|.  

 

So, once again, we have the 𝛿 statement popping out.  The problem is, what do 

we do about |𝑥2 + 2𝑥 + 5|?  We again use the trick of limiting 𝛿 ≤ 1 and ask 

how big |𝑥2 + 2𝑥 + 5| could possibly be? 

 

𝑓(𝑥) = 𝑥3 + 𝑥  
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Since  𝛿 ≤ 1,  ie,  1 < 𝑥 < 3,  we know |𝑥| < 3.   By the triangle inequality: 

           |𝑥2 + 2𝑥 + 5| ≤ |𝑥2| + 2|𝑥| + 5 < 9 + 6 + 5 = 20.   

 

So we have: 

           |𝑥3 + 𝑥 − 10| = |𝑥 − 2||𝑥2 + 2𝑥 + 5| < 20|𝑥 − 2|.  

Now if we can choose a 𝛿 such that |𝑥3 + 𝑥 − 10| < 20|𝑥 − 2| <  𝜖 

We’ll be effectively done.   But this is equivalent to:   |𝑥 − 2| <
𝜖

20
.    

 

So let’s choose   𝛿 = min (1, 
𝜖

20
).   

 

Let’s show that this delta works (if 0 < |𝑥 − 2| < 𝛿  then  |𝑥3 + 𝑥 − 10| < 𝜖). 

If 𝛿 = min (1, 
𝜖

20
) we have: 

|𝑥3 + 𝑥 − 10| = |𝑥 − 2||𝑥2 + 2𝑥 + 5| ;    but since 𝛿 ≤ 1 we know that: 

|𝑥3 + 𝑥 − 10| = |𝑥 − 2||𝑥2 + 2𝑥 + 5| < 20|𝑥 − 2| ;    Since  𝛿 ≤
𝜖

20
 :    

|𝑥3 + 𝑥 − 10| < 20|𝑥 − 2| < 20𝛿 ≤ 20 (
𝜖

20
) = 𝜖.  

So we have proved that lim
𝑥→2

𝑓(𝑥) = 10. 
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Ex.  Prove lim
𝑥→1

1

𝑥
= 1. 

 

 

 

 

 

 

 

We must show that given any 𝜖 > 0, we can find a 𝛿 > 0  such that if 

 0 < |𝑥 − 1| < 𝛿  then  |
1

𝑥
− 1| < 𝜖 . 

 

We start with the 𝜖 statement and work backwards. 

|
1

𝑥
− 1| = |

1

𝑥
−

𝑥

𝑥
| = |

1−𝑥

𝑥
| = |

1

𝑥
| |𝑥 − 1| . 

Now we need an upper bound on |
1

𝑥
|. 

NOTICE, we can’t just let 𝛿 ≤ 1.  Because if we let 𝛿 = 1 then 

0 < |𝑥 − 1| < 𝛿 = 1,  means 𝑥 can be VERY close to 0 and hence 

1

𝑥
  won’t have an upper bound.   

 

𝑦 =
1

𝑥
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However, there’s nothing magical about letting 𝛿 ≤ 1 (it just tends to be easy to 

work with).  We just want to make sure 𝑥 stays away from 0, so choose  

𝛿 ≤
1

2
  (or any number less than 1 and greater than 0). 

This means that:      |𝑥 − 1| <
1

2
 

                              −
1

2
< 𝑥 − 1 <

1

2
                      (now add 1 to all quantities) 

                                    
1

2
< 𝑥 <

3

2
                             (now take reciprocals since  

                                                                                      all terms have same sign) 

                                  2 >
1

𝑥
>

2

3
 

So:                         |
1

𝑥
| < 2   if   𝛿 ≤

1

2
 . 

So if  𝛿 ≤
1

2
 we have: 

|
1

𝑥
− 1| = |

1−𝑥

𝑥
| = |

1

𝑥
| |𝑥 − 1| < 2|𝑥 − 1| < 𝜖. 

2|𝑥 − 1| < 𝜖 is equivalent to |𝑥 − 1| <
𝜖

2
 . 

So choose  𝛿 = 𝑚𝑖𝑛 (
1

2
,

𝜖

2
) .  

 

Now let’s show this 𝛿 works: 

|
1

𝑥
− 1| = |

1

𝑥
−

𝑥

𝑥
| = |

1−𝑥

𝑥
| = |

1

𝑥
| |𝑥 − 1| < 2|𝑥 − 1|   Since  𝛿 ≤

1

2
 . 

                                                    < 2𝛿 ≤ 2 (
𝜖

2
) = 𝜖                     Since  𝛿 ≤

𝜖

2
 .                                              

So lim
𝑥→1

1

𝑥
= 1. 
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Ex.   Prove lim
𝑥→0

√𝑥
5

= 0.  

 

 

 

 

We must show that given any 𝜖 > 0, we can find a 𝛿 > 0  such that if 

 0 < |𝑥 − 0| < 𝛿  then  |√𝑥
5

− 0| < 𝜖. 

Or, equivalently,    if  0 < |𝑥| < 𝛿   then  |√𝑥
5

| < 𝜖. 

So we need:    |√𝑥
5

| = √|𝑥|5 < 𝜖   or  |𝑥| < 𝜖5. 

Choose  𝛿 = 𝜖5. 

Now let’s show that this 𝛿 works: 

0 < |𝑥| < 𝛿   means that  |𝑥| < 𝛿 = 𝜖5  or equivalently:  |√𝑥
5

| < 𝜖 

This is algebraically the same as:   |√𝑥
5

− 0| < 𝜖. 

So we have shown that lim
𝑥→0

√𝑥
5

= 0. 

 

 

 

 

𝑦 = √𝑥
5
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Ex.   Prove that  lim
(𝑥,𝑦)→(0,0)

(2𝑥3 − 𝑦2) = 0. 

 

 

 

 

 

 

 

 

 

We must show that given any 𝜖 > 0, we can find a 𝛿 > 0  such that if  

 0 < 𝑑((𝑥, 𝑦), (0,0)) < 𝛿  then |2𝑥3 − 𝑦2 − 0| < 𝜖. 

i.e.   if   0 < √(𝑥 − 0)2 + (𝑦 − 0)2 = √𝑥2 + 𝑦2 < 𝛿  then |2𝑥3 − 𝑦2| < 𝜖. 

 

Let’s start with the 𝜖 statement and work backards toward the 𝛿 statement. 

Using the triangle inequality we have: 

|2𝑥3 − 𝑦2| ≤ |2𝑥3| + |𝑦2| = 2|𝑥|3 + |𝑦|2  

Since √𝑥2 + 𝑦2 < 𝛿  we have |𝑥| < √𝑥2 + 𝑦2 < 𝛿 and |𝑦| < √𝑥2 + 𝑦2 < 𝛿. 

 

 

𝑧 = 2𝑥3 − 𝑦2  

𝑥 

𝑦 
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Now choose 𝛿 ≤ 1, so |𝑥| < 𝛿 ≤ 1  and  |𝑦| < 𝛿 ≤ 1. 

Notice that |𝑥|3 < |𝑥| and  |𝑦|2 < |𝑦| since |𝑥| < 1 and |𝑦| < 1,   So we 

have: 

|2𝑥3 − 𝑦2| ≤ 2|𝑥|3 + |𝑦|2 < 2|𝑥| + |𝑦| < 2𝛿 + 𝛿 = 3𝛿. 

So we need to force 

|2𝑥3 − 𝑦2| < 3𝛿 < 𝜖.  

Or  𝛿 <
𝜖

3
 .  

 

Choose 𝛿 = min (1,
𝜖

3
). 

Now let’s show that this 𝛿 works. 

If 0 < √𝑥2 + 𝑦2 < 𝛿  then: 

|2𝑥3 − 𝑦2| ≤ |2𝑥3| + |𝑦2| = 2|𝑥|3 + |𝑦|2 ;    so 

|2𝑥3 − 𝑦2 − 0| ≤ 2|𝑥|3 + |𝑦|2 < 2|𝑥| + |𝑦|              because 𝛿 ≤ 1.   

 

Since √𝑥2 + 𝑦2 < 𝛿  ⇒ |𝑥| < 𝛿  and  |𝑦| < 𝛿,         we have: 

|2𝑥3 − 𝑦2 − 0| <  2|𝑥| + |𝑦| < 3𝛿 ≤ 3 (
𝜖

3
) = 𝜖 .    because 𝛿 ≤

𝜖

3
. 

 

Thus we have shown that lim
(𝑥,𝑦)→(0,0)

(2𝑥3 − 𝑦2) = 0. 
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Theorem (Squeeze theorem):  If ℎ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑔(𝑥) for 𝑥𝜖(𝑎, 𝑏), except 

possibly at 𝑐𝜖(𝑎, 𝑏), and if  lim
𝑥→𝑐

ℎ(𝑥) = lim
𝑥→𝑐

𝑔(𝑥) = 𝐿, then lim
𝑥→𝑐

𝑓(𝑥) exists and 

equals 𝐿. 

 

 

 

 

 

 

 

Proof:   

Given any 𝜖 > 0 we need to show that there exists a 𝛿 > 0  such that if 

 0 < |𝑥 − 𝑐| < 𝛿  then  |𝑓(𝑥) − 𝐿| < 𝜖.  

 

Since lim
𝑥→𝑐

ℎ(𝑥) = lim
𝑥→𝑐

𝑔(𝑥) = 𝐿 we know that given any 𝜖 > 0 there exists a 

 𝛿1 > 0 and a  𝛿2 > 0 such that if: 

0 < |𝑥 − 𝑐| < 𝛿1  then  |ℎ(𝑥) − 𝐿| < 𝜖 

0 < |𝑥 − 𝑐| < 𝛿2  then  |𝑔(𝑥) − 𝐿| < 𝜖.  

 

Let’s let 𝛿 = min (𝛿1, 𝛿2). 

Thus if  0 < |𝑥 − 𝑐| < 𝛿  then we know both: 

|ℎ(𝑥) − 𝐿| < 𝜖     and     |𝑔(𝑥) − 𝐿| < 𝜖.       

𝑦 = 𝑔(𝑥) 

𝑦 = ℎ(𝑥) 

𝑦 = 𝑓(𝑥) 

𝑐 

𝐿 
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  Or equivalently: 

−𝜖 < ℎ(𝑥) − 𝐿 < 𝜖      and    −𝜖 < 𝑔(𝑥) − 𝐿 < 𝜖.    

 

In particular, we know that if 0 < |𝑥 − 𝑐| < 𝛿  then: 

    −𝜖 < ℎ(𝑥) − 𝐿      and       𝑔(𝑥) − 𝐿 < 𝜖        or 

𝐿 − 𝜖 < ℎ(𝑥)             and                 𝑔(𝑥) < 𝐿 + 𝜖 . 

 

But by assumption          ℎ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑔(𝑥)  so we have: 

     𝐿 − 𝜖 < ℎ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑔(𝑥) < 𝐿 + 𝜖    

                 𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖          which is the same as: 

|𝑓(𝑥) − 𝐿| < 𝜖     if  0 < |𝑥 − 𝑐| < 𝛿   

So we have shown that lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

 

Ex.   Prove lim
𝑥→0

𝑥𝑠𝑖𝑛(
1

𝑥
) = 0. 

 

Since |𝑠𝑖𝑛(
1

𝑥
)| ≤ 1    we have that    0 ≤|𝑥𝑠𝑖𝑛(

1

𝑥
)| ≤ |𝑥|    

Now let ℎ(𝑥) = 0,   𝑓(𝑥) = |𝑥𝑠𝑖𝑛(
1

𝑥
)|,   𝑔(𝑥) = |𝑥| 

Since lim
𝑥→0

|𝑥| = 0   and lim
𝑥→0

0 = 0,  we know that lim
𝑥→0

|𝑥𝑠𝑖𝑛 (
1

𝑥
) | = 0.   
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From an earlier HW problem we know that for a sequence {𝑎𝑛},  lim
𝑛→∞

𝑎𝑛 = 0  if 

and only if lim
𝑛→∞

|𝑎𝑛| = 0.   It is also true for limits of functions: 

lim
𝑥→𝑐

𝑓(𝑥) = 0 if an only if lim
𝑥→𝑐

|𝑓(𝑥)| = 0.  

 

Thus lim
𝑥→0

𝑥𝑠𝑖𝑛 (
1

𝑥
) = 0. 

 

 

Theorem:  Let 𝑋, 𝑌 be metric spaces with 𝑓: 𝐸 ⊆ 𝑋 → 𝑌, with 𝑝 a limit point of 𝐸 

and 𝑞𝜖𝑌, then lim
𝑥→𝑝

𝑓(𝑥) = 𝑞  if and only if lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑞 for every sequence 

{𝑥𝑛} ⊆ 𝐸 such that 𝑥𝑛 ≠ 𝑝 and lim
𝑛→∞

𝑥𝑛 = 𝑝. 

 

 

 

 

 

 

 

Proof:   Assume lim
𝑥→𝑝

𝑓(𝑥) = 𝑞 and we will show that given any sequence 

  {𝑥𝑛} ⊆ 𝐸 such that 𝑥𝑛 ≠ 𝑝 and lim
𝑛→∞

𝑥𝑛 = 𝑝, that lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑞.  

 

𝑞 

𝑓(𝑥1) 

𝑓(𝑥2) 

𝑓(𝑥3) 

𝑓(𝑥𝑛) 

𝑌 

 

𝐸 

𝑋 

𝑓 

𝜖 
𝛿 

𝑝 

𝑥1 

𝑥2 

𝑥3 

𝑥𝑛  
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Let 𝜖 > 0 be given. By definition of lim
𝑥→𝑝

𝑓(𝑥) = 𝑞,  there exists a 𝛿 > 0 such 

that if 𝑥𝜖𝐸 and  0 < 𝑑𝑋(𝑥, 𝑝) < 𝛿  then  𝑑𝑌(𝑓(𝑥), 𝑞) < 𝜖.  

 

 Since lim
𝑛→∞

𝑥𝑛 = 𝑝, by definition, there exists an 𝑁 such that if 𝑛 ≥ 𝑁 then 

 0 < 𝑑𝑋(𝑥𝑛, 𝑝) < 𝛿  (for the above 𝛿).   

 

So for 𝑛 ≥ 𝑁,  0 < 𝑑𝑋(𝑥𝑛, 𝑝) < 𝛿,   and 𝑑𝑌(𝑓(𝑥𝑛), 𝑞) < 𝜖 

Thus lim
𝑛→∞

𝑓(𝑝𝑛) = 𝑞. 

 

Now we assume that  lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑞 for every sequence {𝑥𝑛} ⊆ 𝐸 such that 

𝑥𝑛 ≠ 𝑝 and lim
𝑛→∞

𝑥𝑛 = 𝑝 and show that lim
𝑥→𝑝

𝑓(𝑥) = 𝑞. 

We will do this with a proof through contradiction.  

 

Let’s assume that the conclusion is false, ie that lim
𝑥→𝑝

𝑓(𝑥) ≠ 𝑞. 

Then there exists some 𝜖 > 0 such that for every 𝛿 > 0 there exists a point 𝑥𝜖𝐸 

(that depends on 𝛿) for which 𝑑𝑌(𝑓(𝑥), 𝑞) ≥ 𝜖,  but 0 < 𝑑𝑋(𝑥, 𝑝) < 𝛿  . 

Take 𝛿𝑛 =
1

𝑛
;   𝑛 = 1, 2, 3, … 

For each 𝛿𝑛 there exists some point 𝑥𝑛 with 𝑑𝑌(𝑓(𝑥𝑛), 𝑞) ≥ 𝜖. 

But then lim
𝑥→𝑝

𝑓(𝑥𝑛) ≠ 𝑞 which contradicts our assumption that lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑞. 

So lim
𝑥→𝑝

𝑓(𝑥) = 𝑞. 
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Def.   𝑓, 𝑔: 𝑋 → ℝ,   𝑋 a metric space.  Then: 

 1.    (𝑓 ± 𝑔)(𝑥) = 𝑓(𝑥) ± 𝑔(𝑥)  

 2.    (𝑓𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥)  

 3.     
𝑓

𝑔
(𝑥) =

𝑓(𝑥)

𝑔(𝑥)
;      𝑔(𝑥) ≠ 0          

 

        𝑓, 𝑔: 𝑋 → ℝ𝑘 

1.    (𝑓 ± 𝑔)(𝑥) = 𝑓(𝑥) ± 𝑔(𝑥)     (vector addition/subtraction) 

2.    (𝑓 ∙ 𝑔)(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥)          (dot product of vectors) 

3.    (𝜆𝑓)(𝑥) = 𝜆𝑓(𝑥)                         (scalar multiplication, 𝜆𝜖ℝ). 

 

 

Theorem:  Suppose 𝐸 ⊆ 𝑋 a metric space, 𝑝 a limit point of 𝐸, and 𝑓, 𝑔: 𝐸 → ℝ 

with   lim
𝑥→𝑝

𝑓(𝑥) = 𝐴   and   lim
𝑥→𝑝

𝑔(𝑥) = 𝐵,   then: 

a.   lim
𝑥→𝑝

(𝑓 ± 𝑔)(𝑥) = 𝐴 ± 𝐵    

b.   lim
𝑥→𝑝

𝑓𝑔(𝑥) = 𝐴 𝐵 

c.   lim
𝑥→𝑝

𝑓

𝑔
 (𝑥) =

𝐴

𝐵
 ;   if 𝐵 ≠ 0.      

Proof.  All 3 follow from the previous theorem and the analogous theorem for 

sequences. 


