Limits of Functions

Def. Let X and Y be metric spaces; suppose E € X, f:E =Y, and pis a limit
point of E. We write: f(x) - q asx — p or lim f(x) = q, ifthereisa
X—p

point geY such that for every € > 0 there exists a & > 0 such that if for all x€E
forwhich: 0 < dy(x,p) < & then dy(f(x),q) < €. Y

f(NS(p))..oo..
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For X =Y = R this definition says that f(x) - L asx — a or

lim f(x) = L, means that for all € > 0 there existsa & > 0 such that if
xX—a

0<|x—a|l<§d then |f(x) —L| <e.
a JI a2
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Notice that the definition of a limit of a function as x goes to p does NOT depend
on the value of the function at x = p. In fact, a function can have a limit as x goes
to p without the function even being defined at x = p.

To prove that lim f(x) = g, we are going to need to show we can finda § > 0
xX-p
that satisfies the conditions in the definition of lim f(x) = g,. In general, § will
xX—p

depend on the value of € (i.e., § will be a function of €) and will depend on the

point p.
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Ex. Let f(x) = };Ts,g forx #3  (f(x) is not defined at x = 3). Prove that

}Ci_r)ré f(x) =6.

f&) =

for x + 3,

i)

on

By the definition of a limit given earlier, we must show that given any € > 0, we
canfindad > 0 suchthatif 0 < |x — 3| < § then |f(x) — 6] < €.

As with proving the limit of a sequence, we start with the € statement and work
backwards to see what § will work. Here we want to get the § statement to
appear.



2 (x=3)(x+3)

x—3

6|=

6|=|x+3—-6/=|x—3|<e.

x—3 N
But |[x — 3] is exactly what § controls, i.e., 0 < |x — 3| < 6.

Sojustletd = €.

Now let’s see that this works.
0 <|x—3| < 8§ meansthatsinced = €

|x — 3] < € (we now work our algebra in reverse to get the € statement)

2_ _
X 9_6|:(x 3)(x+3)_6|=|x_|_3_6|=|x—3|<e,
x-3 x—3
, x2-9
Soif 0 < |x—3| <é then|x_3 —6|<E.

Thus we have proved: lirrsl) f(x) =6.
X—

Ex. Let f(x) = x? if x # 2 9
=1 if x=2 flx) =x% if x#2
Prove }Ci_r)r%f(x) = 4. — 1 if x

n
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We must show that given any € > 0, we can finda d > 0 such thatiif
0<|x—2] <6 then |f(x) — 4| <e.
Let’s start with the € statement and work backwards until the § statement appears.
Forx # 2, f(x) = x%. So the € statement is:

|x2 —4| <€

X2 — 4| =|(x+2)(x — 2)| = |x + 2|]|x — 2].
x — 2| is part of the & statement, but what do we do about the factor |x :
2 fthe & but what do we do about the factor |x + 2|?

Notice thatif 6 < 1, ie, 1 <x < 3,then 3<x+2<50r |x+ 2| <5.

Soif§ < 1,then |x%2 —4| = |x + 2||x — 2] < 5|x — 2|.

Thus, If we can ensure that 5|x — 2| < €, then [x? — 4| < €.

Equivalently, if we can ensure that |x — 2| <§ then |x? — 4| < €.

So choose § = min(l,g).

Let’s show that this § works, i.e., thatif 0 < |x — 2| < § then |x? — 4| < €.
0<|x—2|<6= min(1,§)

|x%2 — 4| = |x + 2]|x = 2]; since 8 < 1 we know that |x + 2| < 5, so
|x2 — 4| =[x + 2||x — 2| < 5|x —2|; sinced < Ewe have:

=4 =|x+2llx—2| <Slx—2| <55 <5(5) =e.

So we have proved that lirr% f(x) = 4.
X—



Ex. Let f(x) = x3 + x, prove 11n%f(x) = 10.
x>

14
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f(x)=x3+/
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We must show that given any € > 0, we can finda é > 0 such that if

0<|x—2|<6 then [x3 +x—10| <e.

By dividing (x — 2) into x3 + x — 10 we get
x3+x—10 = (x —2)(x?> + 2x + 5) so we have:

|x3 +x — 10| = |x — 2||x? + 2x + 5|.

So, once again, we have the § statement popping out. The problem is, what do
we do about |x2 + 2x + 5|? We again use the trick of limiting § < 1 and ask
how big [x% + 2x + 5| could possibly be?



Since 6 < 1, ie, 1 < x <3, weknow |x| < 3. By the triangle inequality:

|x2 +2x + 5] < |x?| +2|x| +5<9+6+5 = 20.

So we have:
|x3 +x — 10| = |x — 2||x? + 2x + 5| < 20|x — 2|.
Now if we can choose a &8 such that [x3 + x — 10| < 20|x — 2| < €

€
We'll be effectively done. But thisis equivalentto: |x — 2| < 20"

_ €
So let’s choose 6 = min(1, 5)

Let’s show that this delta works (if 0 < |x — 2] < & then |x3 +x — 10| < ¢).
If § = min(1, 26—0) we have:
|x3 +x — 10| = |x — 2||x? + 2x + 5|; butsince § < 1 we know that:

Ix3 +x — 10| = |x — 2||x% + 2x + 5| < 20|x — 2|; Since 55%;

1x3 + x — 10| < 20|x — 2| < 206 < zo(i) — ¢
20

So we have proved that lirr% f(x) =10.
X—
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Ex. Prove lim-= 1.
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We must show that given any € > 0, we can finda § > 0 such that if

0<|x—1| <& then |i—1|<e.

We start with the € statement and work backwards.

ool = =31 - e
X X X

X X

1
Now we need an upper bound on | = |.

NOTICE, we can’t just let § < 1. Because if welet § = 1 then

0 < |x —1] < 8 =1, means x can be VERY close to 0 and hence

1
o won’t have an upper bound.



However, there’s nothing magical about letting 6 < 1 (it just tends to be easy to

work with). We just want to make sure X stays away from 0, so choose

1
6 < > (or any number less than 1 and greater than 0).
This means that:  |x — 1| < %
1 1 .
-3 <x—1< > (now add 1 to all quantities)

1 3 . :
> <x< 2 (now take reciprocals since

all terms have same sign)
1 2
2>—-—> =
X 3

So: |§|<2 it §<

N

Soif 6 < %we have:

1 1—-x 1

-1 == = k-1 <2ix -1l <e
x x x

2|x — 1] < €is equivalent to |[x — 1] <§.

.1
So choose § = mm(z,g) :

Now let’s show this & works:

1 1 X
foal=
X

|1—x
X X

_| — |i| lx — 1| < 2|x — 1| Ssince § <

X

N | =

<25S2(§)=E Since § <

N[ m

o1
Solim=-=1.
x—1X



EX. Prove)lci_r)r(l)w=0. , , 1 -~ y|=Vx

We must show that given any € > 0, we can finda § > 0 such that if
0<|x—0] <8 then |¥/x—0| <€

Or, equivalently, if 0 < |x|] < & then |i/§| <e€.

So we need: |§/§| = 3|x|< € or |x| < €°.

Choose & = €°.

Now let’s show that this § works:
0 < |x| <8 meansthat |x| < 8 = € orequivalently: |i/§| <e€
This is algebraically the same as: |i/§ - 0| < E.

So we have shown that lir% Vx = 0.
X—
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Ex. Provethat lim (2x3 —vy2)=0.
(x,y)—>(0,0)( y)

We must show that given any € > 0, we can finda § > 0 such that if

0 < d((x,),(0,0)) <& then |2x3 —y2 — 0| <.

ie. if 0<,(x—0)24 (@ —0)2=x2+y%2<8§ then|2x3 —y?| <e.

Let’s start with the € statement and work backards toward the § statement.

Using the triangle inequality we have:

123 — y?| < [2x3] + |y?] = 2|x|? + |y|?

Since /X2 + y2 < & wehave x| < /x2+y%2 < §and|y| <. /x2+7y%<86.



Now choose § < 1,s0|x| <d <1 and |y| <6 < 1.

Notice that |x|3 < |x]| and |y|? < || since |x| < 1and|y| < 1, Sowe
have:

12x3 —y2| < 2|x|3 + |y|? < 2|x| + |y| <26 + 6 = 36.
So we need to force

12x3 — y?| < 38 < e.

oréd <<,
3

Choose § = min(l,i).
3

Now let’s show that this & works.

f0 < /x2+y2 < § then:
12x3 — y2| < 12x3] + |y?] = 2|x|3 + |y|?; so

12x3 —y2 — 0] < 2|x|3 + |y]|? < 2|x| + |y| because § < 1.

Since /X2 +y2 <68 = |x| <§ and |y| < 6, we have:

|12x3 —y?2 = 0| < 2|x| + |yl <38 < 3(2) = €. because § <

w | m

Thus we have shown that  lim  (2x3 — y?) = 0.
(x,¥)—(0,0)

11



Theorem (Squeeze theorem): If h(x) < f(x) < g(x) for xe(a, b), except
possibly at ce(a, b), and if lim h(x) = lim g(x) =L, then lim f(x) exists and
X—C X—C xX—=C

equals L.

i'/‘
\ y=g)/
\\ /
/
\ /"
N /
F4
N 7
\ ’ //
- / V./
/ "ff’ ‘\\"\ Y = f(X)
//
— / Y= h(xN N
Proof: 7 c N

Given any € > 0 we need to show that there exists a § > 0 such that if

0<|x—c| <8 then |[f(x) —L| <e.

Since lim h(x) = lim g(x) = L we know that given any € > 0 there exists a
X—=C X—C

61 > 0anda 6, > 0 such thatif:
0<|x—c| <8 then |h(x) —L| <€

0<|x—c|<éd, then |g(x) — L| < e.

Let’s let 6 = min(d4, §,).
Thusif 0 < |x —c| < & then we know both:

lh(x) —L|<e and |g(x)—L|<e.
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Or equivalently:

—e<h(x)—L<e and —e<g(x)—L<e.

In particular, we know thatif 0 < |x — c| < & then:
—e<h(x)—L and g(x)—L<e or

L—e€e < h(x) and gx) <L+e.

But by assumption h(x) < f(x) < g(x) so we have:
L—e<h(x)<f(x)<gx)<L+e
L—e<f(x)<L+e€ which is the same as:
If(x) —Ll<e ifO0<|x—c|<$§

So we have shown that lim f(x) = L.
X—C

Ex. Prove lim xsin(%) = 0.

x—0

Since |Sm(§)| <1 wehavethat 0 Slxsin(iﬂ < |x|
Nowleth(x) = 0, f(x) = [xsin(D)], g(x) = x|

: : : . (1
Since lim |x| = 0 and lim 0 = 0, we know that lim |xsin (—) | = 0.
x—0 x—0 x—0 x
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From an earlier HW problem we know that for a sequence {a,}, lim a, = 0 if
n—>0o

and only if lim |a,| = 0. Itis also true for limits of functions:
n—->0o

lim f(x) = Oifanonlyiflim |f(x)| = 0.
X—C X—C

Thus lim xsin (%) = 0.

x—0

Theorem: Let X,Y be metric spaces with f: E € X = Y, with p a limit point of E
and geY, then lim f(x) = q ifand only if lim f(x,) = q for every sequence
xX-p n—-oo

{x,} € E such that x,, # p and 7%1_{210 Xp = D.

Proof: Assume lim f(x) = g and we will show that given any sequence
X—p

{x,} € E suchthatx, # p and lim x, = p, that lim f(x,) = q.
n—>00 n—>00
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Let € > 0 be given. By definition of lim f(x) = g, there existsa & > 0 such
X-p

thatif xeE and 0 < dy(x,p) < & then dy(f(x),q) < €.

Since lim x,, = p, by definition, there exists an N such thatif n = N then

n—-00

0 < dx(x,,p) <& (forthe above §).

Soforn = N, 0 <dy(x,,p) <6, anddy(f(x,,),q) <e€

Thus lim f(p,,) = q.
n—->00

Now we assume that lim f(x,,) = q for every sequence {x,,} € E such that
n—oo

X, # p and lim x,, = p and show that lim f(x) = gq.
n—oo X-p

We will do this with a proof through contradiction.

Let’s assume that the conclusion is false, ie that lim f(x) # q.
X—p

Then there exists some € > 0 such that for every § > 0 there exists a point xeE
(that depends on &) for which dy (f(x),q) = €, but 0 < dx(x,p) <6 .

1
Take §,, = — n= 12,3, ..
For each &, there exists some point X, with dy (f (x,),q) = €.

But then lim f(x,) # q which contradicts our assumption that lim f(x,) = g.
X-p n—oo

So lim f(x) = q.
X>p
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Def. f,g:X = R, X ametricspace. Then:
L (9 =fx)+gXx)
2. (fo)x) =flgk)
3. g(x)z%; gx)#0
f,9:X > Rk
1. (fx9)(x)=f(x)+g(x) (vectoraddition/subtraction)

2. (f-g9)(x)=f(x)-g(x) (dot product of vectors)
3. (Af)(x) = Af (x) (scalar multiplication, A€R).

Theorem: Suppose E € X a metric space, p a limit pointof E,and f,g: E = R
with lim f(x) = A4 and lim g(x) = B, then:

a. )lcirrll?(f +g)(x)=A+B
b. lim fg(x) =AB
X>p

f ey A
C. )lcl_r)rzljg (x)—B, if B # 0.

Proof. All 3 follow from the previous theorem and the analogous theorem for
sequences.



