Sequences

If no metric is stated for R or R", we will always assume the standard metric.

Def. A sequence {pn} in a metric space X is said to converge if there is a point

peX such that for all € > 0, there exists an N, a positive integer, such that if
n = N thend(p,, p) < €.

In this case we say that lim p,, = p.
n—>00

If {p,,} does not converge, we say that {p,,} diverges.
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Ex. Let{p,} = {;}, e, 12,5, 07

. . 1 . .
then lim p,, = lim — = 0 (we know this from one variable calculus)
n—oo n—-oon

Ex. Let{p,} ={2n+1}, ie, 3,57,9,11,..2n+1, ...

This sequence is unbounded and does not converge.

Ex. Let{p,}={(-D"), ie,-1,1,—-1,1,—-1,1,..., (=D", ...

This sequence is bounded, but does not converge.
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lim p,, = lim D — .
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In one variable calculus we compute limits using limit theorems. Here we want to
be able to prove that a limit statement is correct using the definition of a
convergent sequence given above.

. -1
Ex. Prove that lim ( n) = () from the definition of a convergent sequence.
n—o>00
—_ - - - -
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Proof: We must show that given any € > 0 we can finda N € Z* (which
generally depends on €) such thatif n > N then d(p,, p) = |p, — | < €.

-1
In this case, p,, = ( n) and p = 0. So we have to find a N, such thatifn = N
4 \n
then |( 111) — 0| <e€.

1
If we simplify the last inequality we get: - < € sincen > 0.

1
Solving this inequality forn we get: n > pr
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Now if we just choose N > - we would essentially be done because:

1
n =N meansthat—=<—< € (since N > E)'
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For example, if e = 0.001, we could choose N > o001 = 1000.

So in this case we could choose N=1001 and then foranyn = 1001,

1<l <0001
n 1001

1

If e = 0.00001, we could choose N >
0.00001

= 100,000.

In this case we could choose N = 100,001 and then foranyn = 100,001,

1
100,001

< 0.00001 .

Z<
n

Thusif N > % then we have:

|(_1)n <e€

—o[=icd
n n N
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Hence, llm( ) — 0.
n—oo n

So when we are proving a sequence of real numbers converges (with the
standard metric) to some limit in R, we must find a formula for N in terms of €,

that will ensure thatif n > N then |p,, — p| < €.



n . . n
Ex. Prove that the sequence {m} converges to 1, i.e. lim i 1.
n—>00
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We must show that given any € > 0 we can find N such thatif n = N then

|pn_p|=|i_1 <€

n+1

We start with the epsilon statement and try to solve the inequality for n.

| n 1| _ |n (n+1)| |
n+1 n+1)  n+1 n+1

1
This is equivalentto: n+1 > -

Tl>>l—-1.
€

1
Now we might be tempted to let N > P 1, and that’s almost right. We have
1
one small problem. If € = 10, for example, P 1 is a negative number. So just

1
choosing N > P 1 would also include N = 0 (but N is a positive integer).

1
We can get around this problem by letting N > max (0, i 1).

Let’s show that this choice of N works.

Ifn = N then: = <73 =€

n+l o —-1+41

n | 1 1

] n
So lim — = 1.
n—-oo n+1



Notice that which metric we use can matter when it comes to convergence.

If we take the sequence {ﬁ} but use the metric,
d(p.q) =1 ifp#gq
=0 ifp=gq

then d (L, 1) = 1 for all n. Thus with this metric {L} does NOT converge
n+1 n+1
to 1.

; n 1
Ex. Prove that lim — # —.
n-oo n+1 3

We will eventually show that if a limit exists it is unique and therefore by our

1
previous example the limit can’t be 3 but for now we will show this directly.

To show a limit doesn’t exist, we need to find some € > 0 so that no matter what

n 1
< E.

N we choose, n = N can’t ensure that
n+1 3

So how do we choose this €? For € just choose a number so that an interval of

1
that radius € around the “false” limit (in this case E) doesn’t include the actual

limit (in this case 1).

1 2
In this case any € lessthan 1 — = = 3 will work. So let’s take € =

<
3
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Now let’s show that there does not exist a N such thatif n = N then

n+1 3

n 1| 1
"

We can do this by showing that for n bigger than some number M, that

4"

n 1| 1
n+1 3

Let’s solve this inequality.

_| _ | 2n—1 |
n+1 3(n+1)
‘ tive int 2n—1 >0 2n—1 | 2n—1
n , =
or any positive integer n, 3t D) so 3t D) 3t D)
2n—1 l
3(n+1)
4(2n—1)>3n+3
8n—4>3n+3
5Sn>7
7
n>-
5
7 n 1 1
Thus we have shown thatforn > -, |— — —| > =
5 n+1 3 4

That means that there is no positive integer N such thatif n > N then

n+1 3

n 1| 1
2

. n 1
Thus lim — # —.
n—-oo n+1 3
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Ex. Prove that lim e
n—->00

We must show that given any € > 0 we can find a N such thatif n = N then

1
len — 1| < €.

1
Start by solving this inequality for n (what can we say about the sign of en — 1 if

n is a positive integer?)
1 1
len— 1| =en—1<e€

1
en<e+1 Now take natural logs of both sides

In (e%) <lIln(e+1)

1
~< In(e +1) Since both sides are positive we get

1
> In(e+1)
1
Let N > . Now let’s show thatifn = N then | en — 1| < €.
In(e+1)
> ’
n=N> (et D) Now let’s work the steps above backwards.
1
~< In(e +1)
1
en<e+1
1 1 1

en—1<e¢€; Butsihcen>0, en—1=|en—1|,s0

1

len — 1] < €.



Theorem: Let {p,,} be a sequence in a metric space X, d.

a. {p,} — peX if and only if every neighborhood of p contains p,, for all but a
finite number of n.

b. Ifp € X, p'eX, andif {p,} converges top and to p’, thenp = p’.

c. If {p,} converges, then {p, } is bounded.

Proof: a. First we show if {p,,} = peX then every neighborhood of p contains all
but a finite number of the p,,’s.

Let V be any neighborhood of p.

Since V is a neighborhood of p, for some € > 0, d(p, q) < € implies that geV.

By the definition of convergence, there exists an N such that if n = N then

d(p,, ) < €.

Soforn = N, p,€eV. ThusV contains p, for all but a finite number of n.



Now let’s show that if every neighborhood of p contains all but a finite number of
the p,’s, then {p, } = peX .

Fixan € > 0 and let V be the set of all g such that d(p,q) < e.

By assumption, V contains all but a finite number of the p,,’s, thus for some N, if
n = N then p,e V and hence d(p,,p) < €. Hence {p,,} = peX.

b. Lete > 0 be given. Since {p,} converges to both p and p’, there exist N, N’
such that if:

n = N then d(p,, p) < g

n = N'then d(p,, p") < g

Hence if n = max(N, N') then d(p,,, p) < g and d(p,,p") < g :

Butthen: d(p,p") < d(py,p) +d(pn,p) <+>-= ¢

Since € can be arbitrarily small that means d(p,p’) = 0and p =p'.
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c. Suppose {p,} = p. Since {p,} = p we know that there is a N such that if

n = N then d(p,,p) < 1.

Let r = Max(1,d(p1,p), d(p,,p), d(ps,p), ..., dA(PN-1,D)).

Then d(p,, p) < r foralln and {p,,} is bounded.

Ex. Suppose lim a, = 0, {a,}is a sequence of real numbers. Prove that
n—->0oo

lim (a,)?=0.
n—>0o

Proof: We need to show that given any € > 0 we can find an N such thatifn > N
then |(a,)? — 0| < € or |a,| <+e.

Since lim a,, = 0, we know that we can find an N’ such that if n > N’ then

n—oo

la, — 0] <+e; ie |a,| <.

Choose N = N'.

Thus given any € > 0 we can find an N such thatifn > N = N’
la,,| < /€ which implies |a,|?> < €or |(a,)? —0| < €.

Thus lim(a,)? = 0.
n—>00
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Ex. Let{a,}, {b,} be sequences in a metric space X, d where {a,,} - a and

{b,} = b. Assume thatd(a,, b,,) < % forn > 2. Prove that a = b.

First draw a picture:
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To prove that a = b, we just need to show that d(a, b) can be made arbitrarily
small, i.e., givenany € > 0, d(a, b) < €.

The “trick” here is to relate d(a, b) to d(a, a,,), d(b,, b) (which we know
something about because {a,} » a , {b,} = b) and d(a,, b,) (which we know

is < n_il ).

This relationship will come from the triangle inequality. Notice that:
using the triangle inequality on a, a,,, and b we get:

d(a,b) < d(a,a,) + d(a,,b).

Notice that if we apply the triangle inequality to a,, b,and b,, we get:

d(an; b) S d(anl bn) + d(bn; b)



Combining these 2 inequalities we get:
d(a,b) <d(a,a,) + d(a,,b,) + d(b,,b).

Now if we can show that the RHS is < €, forn = N, we’ll be done.

Since {a,} = a, we can findan N; such thatifn = N;, d(a,a,) < g :

Since {b,} = b, we can find an N, such thatifn > N,, d(b,,b) < g :

We need to show that we can find an N5 such thatif n = N3, d(a,, b,) < g :

€

1 . 1
But we know that d(a,,, b,,) < — - Sowejust need <3

Solving this inequality we get n > 2 + 1. So take N3 > S +1.

Now let N = max(N;, N, N3). Ifn > N then

d(a,b) <d(a,a,) + d(ay, b,) + d(b,, b) < g + g + g = €.

Soa =b.

12
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The triangle inequality, |a + b| < |a| + |b|, for any real numbers a and b, is one
of the most useful relationships in Analysis. There is a related inequality that

follows from the triangle inequality that is also quite useful, particularly when
dealing with absolute value functions.

Proposition: For any real numbersa and b, ||a| — |b|| < |a — b].

Proof:  If |a| = |b|, then by the triangle inequality:
la| = |(a —b) + b| < |a —b| + |b]
la| — |b| < |a — b].
Butsince |a| = |b|, |a| —|b| = ||a| — |b||, S0

llal = bl < la = b|.

If |b| = |a| then by the triangle inequality:
|b| = |(b—a) +a| < |a—b|+|al
|b| = |a| < |a — b]
Butsince |b| = |a|, |b| —|a| = ||b| — |a|| = ||la| — |b]|, so

llal = bl < |la — b|.
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Ex. Suppose {a,} is a sequence of real numbers and lim a,, = L. Prove that
n—>00

lim | a,| = |L|.

n—oo

We must show given any € > 0 there existsan N € Z7 such thatif n > N then
|Ian| — |L|| <E€.

However, since lim a,, = L, we know given any € > 0 there existsan N' € Z*

n—->00

such thatifn > N’ then |a,, — L| < €.

Using the inequality we just proved from the triangle inequality we get:

||an| - |L|| < |an - Ll-

Thus if we choose N = N’ thennn > N = N’ means that

||an| - |L|| < |an _Ll <€

Thus lim | a,| = |L|.
n—oo
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Theorem: Suppose {s,,}, {t,} are real (or complex) sequencesand lim s,, = s
n—-oo

and lim t,, =t then

n—oo

a. lim(s,+ty,) =s+t
n—-oo

b. limcs, =cs and lim (c +s,) = c + s ; where cis any constant.

n—->0oo n—-oo

c. lims,t, =st

n—>0o

.1 1
d. lim - —; provided s, # 0 foranyn; s # 0.
n—oo Sn S

Proof of a. and b.:

a. Givenany € > 0 we need to show that there is N such thatn = N implies:
|(s, +t,) — (s +t)| <e.

Since lim s,, = s and lim t,, = t we know that

n—>0o n—>0o

Given € > (0 there exists integers Ny, N, such that:

€
n = Nj implies that |s,, — s| < >

n = N, implies that |[t,, — t]| < g

If N = max(N;, N,) then n = N implies:
[(sp +tn) — (s +O)| < |sp, —s| + |t — ¢t <§+§=e

So lim (s, +t,) =s +t.

n—-o0o
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b. 1. Givenany € > 0 we need to show that there is N such thatn = N
implies:
£

|cs,, — cs| < € orequivalently |c]||s, —s| < € or |s, —s| < o

Since lim s,, = s, we know for any € > 0 we can find an N such thatn > N
n—-0oo

T €

implies: |s;, — s| < R

Thus for that N, n > N implies: |c||s,, —s| < € or |cs, —cs| < €

Thus lim ¢ s,, = cs.

n—-o0o

2. Givenany e > 0 we need to show that there is N such thatn = N implies:
|(c +5s,) — (c+5)| < € orequivalently |s,, —s| <€

Since lim s,;, = s, we know forany € > 0 we can find an N’ such thatn > N’
n—->oo

implies: |s,, — s| < €.

If we take N = N', thenn = N implies: |(c +5s,) — (c+5)| < €.



