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                                                            Sequences 

If no metric is stated for ℝ or ℝ𝒏, we will always assume the standard metric. 

 

Def.  A sequence {𝑝𝑛} in a metric space 𝑋 is said to converge if there is a point 

𝑝𝜖𝑋 such that for all 𝜖 > 0, there exists an 𝑁, a positive integer, such that if 

 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑛, 𝑝) <  𝜖. 

In this case we say that lim
𝑛→∞

𝑝𝑛 = 𝑝. 

If {𝑝𝑛} does not converge, we say that {𝑝𝑛} diverges. 

 

 

 

 

 

 

Ex.   Let {𝑝𝑛} = {
1

𝑛
},  i.e., 1, 

1

2
,

1

3
,

1

4
, … ,

1

𝑛
, … 

then lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

1

𝑛
= 0 (we know this from one variable calculus) 

 

Ex.  Let {𝑝𝑛} = {2𝑛 + 1},  i.e.,  3,5,7,9,11, … ,2𝑛 + 1, … 

This sequence is unbounded and does not converge. 

 

Ex.   Let {𝑝𝑛} = {(−1)𝑛},  i.e., -1, 1, −1, 1, −1, 1, … , (−1)𝑛, … 

This sequence is bounded, but does not converge. 

𝜖 
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Ex.   Let {𝑝𝑛} = {
(−1)𝑛

𝑛
}, i.e., −1,

1

2
, − 

1

3
,

1

4
, − 

1

5
, …, 

(−1)𝑛

𝑛
, … 

lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

(−1)𝑛

𝑛
= 0 . 

 

In one variable calculus we compute limits using limit theorems.  Here we want to 

be able to prove that a limit statement is correct using the definition of a 

convergent sequence given above. 

 

Ex.  Prove that lim
𝑛→∞

(−1)𝑛

𝑛
= 0 from the definition of a convergent sequence. 

 

 

Proof:  We must show that given any 𝜖 > 0 we can find a 𝑁 ∈ ℤ+ (which 

generally depends on 𝜖) such that if 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑛, 𝑝) = |𝑝𝑛 − 𝑝| < 𝜖.   

In this case, 𝑝𝑛 =
(−1)𝑛

𝑛
 and 𝑝 = 0.  So we have to find a 𝑁, such that if 𝑛 ≥ 𝑁 

then |
(−1)𝑛

𝑛
− 0| < 𝜖. 

If we simplify the last inequality we get:  
1

𝑛
<  𝜖   since 𝑛 > 0. 

Solving this inequality for 𝑛 we get:      𝑛 >
1

𝜖
 . 

 

 

 

−1                                  −
1

3
    −

1

5
        0              

1

4
              

1

2
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Now if we just choose 𝑁 >
1

𝜖
  , we would essentially be done because: 

𝑛 ≥ 𝑁  means that 
1

𝑛
≤

1

𝑁
< 𝜖       (since 𝑁 >

1

𝜖
).  

For example, if 𝜖 = 0.001, we could choose 𝑁 >
1

0.001
= 1000.  

So in this case we could choose 𝑁=1001 and then for any 𝑛 ≥ 1001, 

1

𝑛
≤

1

1001
< 0.001.  

 

If 𝜖 = 0.00001, we could choose 𝑁 >
1

0.00001
= 100,000. 

In this case we could choose 𝑁 = 100,001 and then for any 𝑛 ≥ 100,001, 

1

𝑛
≤

1

100,001
< 0.00001 .  

 

Thus if 𝑁 >
1

𝜖
  then we have: 

|
(−1)𝑛

𝑛
− 0| =

1

𝑛
≤

1

𝑁
< 𝜖   

Hence,      lim
𝑛→∞

(−1)𝑛

𝑛
= 0.      

 

  

   So when we are proving a sequence of real numbers converges (with the 

standard metric)  to some limit in ℝ, we must find a formula for 𝑵 in terms of 𝝐, 

that will ensure that if 𝒏 ≥ 𝑵 then |𝒑𝒏 − 𝒑| < 𝜖. 
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Ex.  Prove that the sequence {
𝑛

𝑛+1
} converges to 1, i.e.  lim

𝑛→∞

𝑛

𝑛+1
= 1. 

 

 

We must show that given any 𝜖 > 0 we can find 𝑁 such that if 𝑛 ≥ 𝑁 then           

|𝑝𝑛 − 𝑝| = |
𝑛

𝑛+1
− 1| < 𝜖.  

 

We start with the epsilon statement and try to solve the inequality for 𝑛.  

|
𝑛

𝑛+1
− 1| = |

𝑛−(𝑛+1)

𝑛+1)
| = |

−1

𝑛+1
| =

1

𝑛+1
< 𝜖  

This is equivalent to:   𝑛 + 1 >
1

𝜖
 

                                              𝑛 >
1

𝜖
− 1. 

Now we might be tempted to let 𝑁 >
1

𝜖
− 1, and that’s almost right.  We have 

one small problem.  If  𝜖 = 10, for example, 
1

𝜖
− 1 is a negative number.  So just 

choosing 𝑁 >
1

𝜖
− 1 would also include 𝑁 = 0 (but 𝑁 is a positive integer). 

We can get around this problem by letting 𝑁 > max (0,
1

𝜖
− 1). 

Let’s show that this choice of 𝑁 works. 

If 𝑛 ≥ 𝑁 then:  |
𝑛

𝑛+1
− 1| =

1

𝑛+1
<

1
1

𝜖
−1+1

= 𝜖 

So lim
𝑛→∞

𝑛

𝑛+1
= 1. 

 

0                                                              
1

2
                    

2

3
          

3

4
     

4

5
                         1 
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Notice that which metric we use can matter when it comes to convergence. 

If we take the sequence {
𝑛

𝑛+1
} but use the metric,  

                         𝑑(𝑝, 𝑞) = 1     if  𝑝 ≠ 𝑞 

                                        = 0    if  𝑝 = 𝑞 

then  𝑑 (
𝑛

𝑛+1
, 1) = 1 for all 𝑛.  Thus with this metric {

𝑛

𝑛+1
} does NOT converge 

to 1. 

 

Ex.  Prove that lim
𝑛→∞

𝑛

𝑛+1
≠

1

3
 .  

 

We will eventually show that if a limit exists it is unique and therefore by our 

previous example the limit can’t be  
1

3
 , but for now we will show this directly. 

To show a limit doesn’t exist, we need to find some 𝜖 > 0 so that no matter what 

𝑁 we choose, 𝑛 ≥ 𝑁 can’t ensure that  |
𝑛

𝑛+1
−

1

3
| < 𝜖. 

So how do we choose this 𝜖?   For 𝜖 just choose a number so that an interval of 

that radius 𝜖  around the “false” limit (in this case  
1

3
)  doesn’t include the actual 

limit (in this case 1). 

In this case any 𝜖 less than 1 −
1

3
=

2

3
  will work.  So let’s take  𝜖 =

1

4
<

2

3
 . 

 

 

 

0                                      
1

3
                      

1

2
                    

2

3
          

3

4
     

4

5
                         1 

 

) ( 

1

4
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Now let’s show that there does not exist a 𝑁 such that if 𝑛 ≥ 𝑁 then  

|
𝑛

𝑛+1
−

1

3
| <

1

4
 . 

We can do this by showing that for 𝑛 bigger than some number 𝑀, that 

|
𝑛

𝑛+1
−

1

3
| >

1

4
 .    

Let’s solve this inequality. 

|
𝑛

𝑛+1
−

1

3
| = |

2𝑛−1

3(𝑛+1)
| >

1

4
  

For any positive integer 𝑛,   
2𝑛−1

3(𝑛+1)
> 0, so |

2𝑛−1

3(𝑛+1)
| =

2𝑛−1

3(𝑛+1)
 

        
2𝑛−1

3(𝑛+1)
>

1

4
  

4(2𝑛 − 1) > 3𝑛 + 3  

       8𝑛 − 4 > 3𝑛 + 3  

               5𝑛 > 7   

                 𝑛 >
7

5
  

Thus we have shown that for 𝑛 >
7

5
 ,   |

𝑛

𝑛+1
−

1

3
| >

1

4
 . 

That means that there is no positive integer 𝑁 such that if 𝑛 ≥ 𝑁 then  

|
𝑛

𝑛+1
−

1

3
| <

1

4
 . 

Thus lim
𝑛→∞

𝑛

𝑛+1
≠

1

3
 .   
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Ex.   Prove that lim
𝑛→∞

𝑒
1

𝑛 = 1.  

 

We must show that given any 𝜖 > 0 we can find a 𝑁 such that if 𝑛 ≥ 𝑁 then 

|𝑒
1

𝑛 − 1| <  𝜖. 

Start by solving this inequality for 𝑛  (what can we say about the sign of 𝑒
1

𝑛 − 1 if 

𝑛 is a positive integer?) 

|𝑒
1

𝑛 − 1| = 𝑒
1

𝑛 − 1 < 𝜖 

                               𝑒
1

𝑛 < 𝜖 + 1          Now take natural logs of both sides 

                       ln (𝑒
1

𝑛) < 𝑙𝑛(𝜖 + 1) 

                                 
1

𝑛
< 𝑙𝑛(𝜖 + 1)      Since both sides are positive we get 

                                    𝑛 > 
1

𝑙𝑛(𝜖+1)
.        

Let 𝑁 >
1

𝑙𝑛(𝜖+1)
  .   Now  let’s show that if 𝑛 ≥ 𝑁 then  | 𝑒

1

𝑛 − 1| <  𝜖. 

               𝑛 ≥ 𝑁 >
1

𝑙𝑛(𝜖+1)
     Now let’s work the steps above backwards. 

                      
1

𝑛
< 𝑙𝑛(𝜖 + 1)   

                   𝑒
1

𝑛 < 𝜖 + 1  

           𝑒
1

𝑛 − 1 < 𝜖 ;     But since 𝑛 > 0,    𝑒
1

𝑛 − 1 = |𝑒
1

𝑛 − 1|, so 

         |𝑒
1

𝑛 − 1| <  𝜖 .  
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Theorem:  Let {𝑝𝑛} be a sequence in a metric space 𝑋, 𝑑. 

a.   {𝑝𝑛} → 𝑝𝜖𝑋  if and only if every neighborhood of 𝑝 contains 𝑝𝑛 for all but a 

finite number of 𝑛. 

b.   If 𝑝 ∈ 𝑋,  𝑝′𝜖𝑋 , and if {𝑝𝑛} converges to 𝑝 and to 𝑝′, then 𝑝 = 𝑝′. 

c.   If {𝑝𝑛} converges, then {𝑝𝑛} is bounded. 

 

Proof:  a.  First we show if {𝑝𝑛} → 𝑝𝜖𝑋  then every neighborhood of 𝑝 contains all 

but a finite number of the 𝑝𝑛′𝑠. 

Let 𝑉 be any neighborhood of 𝑝. 

 

 

 

 

 

 

 

 

 

Since 𝑉 is a neighborhood of 𝑝, for some 𝜖 > 0,  𝑑(𝑝, 𝑞) < 𝜖 implies that 𝑞𝜖𝑉. 

By the definition of convergence, there exists an 𝑁 such that if 𝑛 ≥ 𝑁 then 

𝑑(𝑝𝑛, 𝑝) < 𝜖. 

So for 𝑛 ≥ 𝑁,   𝑝𝑛𝜖𝑉.  Thus 𝑉 contains 𝑝𝑛 for all but a finite number of 𝑛. 

 

 

𝑉 
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Now let’s show that if every neighborhood of 𝑝 contains all but a finite number of 

the 𝑝𝑛’s, then {𝑝𝑛} → 𝑝𝜖𝑋 .  

Fix an 𝜖 > 0 and let 𝑉 be the set of all 𝑞 such that  𝑑(𝑝, 𝑞) < 𝜖.   

 

 

 

 

 

 

By assumption, 𝑉 contains all but a finite number of the 𝑝𝑛’s, thus for some 𝑁,  if 

𝑛 ≥ 𝑁 then 𝑝𝑛𝜖 𝑉 and hence 𝑑(𝑝𝑛 , 𝑝) < 𝜖.  Hence {𝑝𝑛} → 𝑝𝜖𝑋 .  

 

b.   Let 𝜖 > 0 be given.  Since {𝑝𝑛} converges to both 𝑝 and 𝑝′, there exist 𝑁, 𝑁′ 

such that if: 

𝑛 ≥ 𝑁 then 𝑑(𝑝𝑛, 𝑝) <
𝜖

2
 

𝑛 ≥ 𝑁′ then 𝑑(𝑝𝑛, 𝑝′) <
𝜖

2
 

 

 

 

Hence if 𝑛 ≥ max (𝑁, 𝑁′) then 𝑑(𝑝𝑛, 𝑝) <
𝜖

2
  and  𝑑(𝑝𝑛, 𝑝′) <

𝜖

2
 . 

But then:   𝑑(𝑝, 𝑝′) ≤  𝑑(𝑝𝑛, 𝑝) + 𝑑(𝑝𝑛, 𝑝′) <
𝜖

2
+

𝜖

2
=  𝜖 

Since 𝜖 can be arbitrarily small that means 𝑑(𝑝, 𝑝′) = 0 and  𝑝 = 𝑝′.  

𝑝1 

𝑝2 

𝑝3 

𝑝 

𝑋 

𝑝′ 
𝜖/2 

𝜖/2 

𝑉 
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c.   Suppose {𝑝𝑛} → 𝑝.  Since {𝑝𝑛} → 𝑝 we know that there is a 𝑁 such that if 

 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑛, 𝑝) < 1. 

 

 

 

 

  

 

Let 𝑟 = 𝑀𝑎𝑥(1, 𝑑(𝑝1, 𝑝), 𝑑(𝑝2, 𝑝), 𝑑(𝑝3, 𝑝), … , 𝑑(𝑝𝑁−1, 𝑝)). 

Then 𝑑(𝑝𝑛, 𝑝) ≤ 𝑟 for all 𝑛 and {𝑝𝑛} is bounded. 

 

Ex.    Suppose lim
𝑛→∞

𝑎𝑛 = 0, {𝑎𝑛} is a sequence of real numbers.  Prove that 

lim
𝑛→∞

(𝑎𝑛)2 = 0 . 

 

Proof:  We need to show that given any 𝜖 > 0 we can find an 𝑁 such that if 𝑛 ≥ 𝑁 

then |(𝑎𝑛)2 − 0| <  𝜖   or     |𝑎𝑛| < √𝜖. 

 Since lim
𝑛→∞

𝑎𝑛 = 0, we know that we can find an 𝑁′ such that if 𝑛 ≥ 𝑁′ then  

|𝑎𝑛 − 0| < √𝜖 ;    ie   |𝑎𝑛| < √𝜖.  

 

Choose 𝑁 = 𝑁′. 

Thus given any 𝜖 > 0 we can find an 𝑁 such that if 𝑛 ≥ 𝑁 = 𝑁′  

|𝑎𝑛| < √𝜖 which implies |𝑎𝑛|2 < 𝜖 or |(𝑎𝑛)2 − 0| <  𝜖 .   

Thus   lim
𝑛→∞

(𝑎𝑛)2 = 0. 

1 
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Ex.  Let {𝑎𝑛} , {𝑏𝑛} be sequences in a metric space 𝑋, 𝑑 where {𝑎𝑛} → 𝑎  and 

{𝑏𝑛} → 𝑏.  Assume that 𝑑(𝑎𝑛, 𝑏𝑛) <
1

𝑛−1
  for 𝑛 ≥ 2. Prove that 𝑎 = 𝑏. 

First draw a picture:   

 

 

To prove that 𝑎 = 𝑏, we just need to show that 𝑑(𝑎, 𝑏) can be made arbitrarily 

small, i.e., given any 𝜖 > 0, 𝑑(𝑎, 𝑏) < 𝜖. 

The “trick” here is to relate 𝑑(𝑎, 𝑏) to 𝑑(𝑎, 𝑎𝑛), 𝑑(𝑏𝑛, 𝑏)   (which we know 

something about because {𝑎𝑛} → 𝑎  ,  {𝑏𝑛} → 𝑏)  and 𝑑(𝑎𝑛, 𝑏𝑛)  (which we know 

is <
1

𝑛−1
  ). 

This relationship will come from the triangle inequality.  Notice that: 

using the triangle inequality on 𝑎, 𝑎𝑛, 𝑎𝑛𝑑 𝑏 we get: 

𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑎𝑛) + 𝑑(𝑎𝑛, 𝑏).        

Notice that if we apply the triangle inequality to  𝑎𝑛, 𝑏, 𝑎𝑛𝑑  𝑏𝑛  we get: 

𝑑(𝑎𝑛, 𝑏) ≤ 𝑑(𝑎𝑛, 𝑏𝑛) + 𝑑(𝑏𝑛 , 𝑏).    

𝑎2 

𝑎3 

 
𝑎4 

 

𝑎5 

 

𝑎6 

 

𝑏2 

𝑏3 

 

𝑏4 

 

𝑏5 

 

𝑏6 

 

𝑋 

𝑎 

𝑏 
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Combining these 2 inequalities we get: 

 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑎𝑛) +  𝑑(𝑎𝑛, 𝑏𝑛) + 𝑑(𝑏𝑛 , 𝑏).    

Now if we can show that the RHS is < 𝜖, for 𝑛 ≥ 𝑁, we’ll be done. 

 

Since {𝑎𝑛} → 𝑎 , we can find an 𝑁1 such that if 𝑛 ≥ 𝑁1,   𝑑(𝑎, 𝑎𝑛) <
𝜖

3
 . 

Since {𝑏𝑛} → 𝑏 , we can find an 𝑁2 such that if 𝑛 ≥ 𝑁2,   𝑑(𝑏𝑛 , 𝑏) <
𝜖

3
 . 

 

We need to show that we can find an 𝑁3 such that if 𝑛 ≥ 𝑁3,   𝑑(𝑎𝑛, 𝑏𝑛) <
𝜖

3
 . 

But we know that 𝑑(𝑎𝑛, 𝑏𝑛) <
1

𝑛−1
    .  So we just need 

1

𝑛−1
<

𝜖

3
 .   

Solving this inequality we get 𝑛 >
3

𝜖
+ 1.  So take 𝑁3 >

3

𝜖
+ 1 . 

 

Now let 𝑁 = max (𝑁1, 𝑁2, 𝑁3).   If 𝑛 ≥ 𝑁 then  

𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑎𝑛) +  𝑑(𝑎𝑛, 𝑏𝑛) + 𝑑(𝑏𝑛 , 𝑏) < 
𝜖

3
+

𝜖

3
+

𝜖

3
= 𝜖.                               

 

So 𝑎 = 𝑏.     
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The triangle inequality, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|, for any real numbers 𝑎 and 𝑏, is one 

of the most useful relationships in Analysis.  There is a related inequality that 

follows from the triangle inequality that is also quite useful, particularly when 

dealing with absolute value functions. 

Proposition:   For any real numbers 𝑎 and 𝑏,  ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|. 

 

Proof:      If |𝑎| ≥ |𝑏|, then by the triangle inequality: 

                  |𝑎| = |(𝑎 − 𝑏) + 𝑏| ≤ |𝑎 − 𝑏| + |𝑏|   

                                      |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|. 

                  But since |𝑎| ≥ |𝑏|,   |𝑎| − |𝑏| = ||𝑎| − |𝑏||,  so 

                                    ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|.  

 

 

       If |𝑏| ≥ |𝑎| then by the triangle inequality: 

                    |𝑏| = |(𝑏 − 𝑎) + 𝑎| ≤ |𝑎 − 𝑏| + |𝑎|    

                                        |𝑏| − |𝑎| ≤ |𝑎 − 𝑏| 

                   But since |𝑏| ≥ |𝑎|,   |𝑏| − |𝑎| = ||𝑏| − |𝑎|| = ||𝑎| − |𝑏||,  so 

                                        ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|.  
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Ex.  Suppose {𝑎𝑛} is a sequence of real numbers and lim
𝑛→∞

𝑎𝑛 = 𝐿.  Prove that 

       lim
𝑛→∞

| 𝑎𝑛| = |𝐿|. 

 

We must show given any 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then 

||𝑎𝑛| − |𝐿|| < 𝜖. 

 

However, since lim
𝑛→∞

𝑎𝑛 = 𝐿, we know given any 𝜖 > 0 there exists an 𝑁′ ∈ ℤ+ 

such that if 𝑛 ≥ 𝑁′ then  |𝑎𝑛 − 𝐿| < 𝜖. 

 

Using the inequality we just proved from the triangle inequality we get: 

                            ||𝑎𝑛| − |𝐿|| ≤ |𝑎𝑛 − 𝐿|. 

 

Thus if we choose 𝑁 = 𝑁′ then 𝑛 ≥ 𝑁 = 𝑁′ means that 

                           ||𝑎𝑛| − |𝐿|| ≤ |𝑎𝑛 − 𝐿| < 𝜖. 

 

Thus  lim
𝑛→∞

| 𝑎𝑛| = |𝐿|. 
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Theorem: Suppose {𝑠𝑛}, {𝑡𝑛}  are real (or complex) sequences and lim
𝑛→∞

𝑠𝑛 = 𝑠 

and lim
𝑛→∞

𝑡𝑛 = 𝑡  then 

a.   lim
𝑛→∞

(𝑠𝑛 + 𝑡𝑛) = 𝑠 + 𝑡 

b.   lim
𝑛→∞

𝑐 𝑠𝑛 = 𝑐𝑠   and lim
𝑛→∞

(𝑐 + 𝑠𝑛) = 𝑐 + 𝑠  ;  where 𝑐 is any constant. 

c.   lim
𝑛→∞

𝑠𝑛𝑡𝑛 = 𝑠 𝑡 

d.   lim
𝑛→∞

1

𝑠𝑛
=

1

𝑠
 ;    provided 𝑠𝑛 ≠ 0 for any n;   𝑠 ≠ 0. 

 

Proof of a. and b.: 

 a.  Given any 𝜖 > 0  we need to show that there is 𝑁 such that 𝑛 ≥ 𝑁 implies:     

|(𝑠𝑛 + 𝑡𝑛) − (𝑠 + 𝑡)| < 𝜖.   

     

Since lim
𝑛→∞

𝑠𝑛 = 𝑠  and lim
𝑛→∞

𝑡𝑛 = 𝑡  we know that 

Given 𝜖 > 0 there exists integers 𝑁1, 𝑁2 such that: 

𝑛 ≥ 𝑁1 implies that |𝑠𝑛 − 𝑠| <
𝜖

2
 

𝑛 ≥ 𝑁2 implies that |𝑡𝑛 − 𝑡| <
𝜖

2
 .  

 

If 𝑁 = max (𝑁1, 𝑁2)  then  𝑛 ≥ 𝑁 implies: 

|(𝑠𝑛 + 𝑡𝑛) − (𝑠 + 𝑡)| ≤ |𝑠𝑛 − 𝑠| + |𝑡𝑛 − 𝑡| <
𝜖

2
+

𝜖

2
= 𝜖 

So  lim
𝑛→∞

(𝑠𝑛 + 𝑡𝑛) = 𝑠 + 𝑡. 
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b.  1.   Given any 𝜖 > 0  we need to show that there is 𝑁 such that 𝑛 ≥ 𝑁 
implies:      

           |c𝑠𝑛 − 𝑐𝑠| <  𝜖  or equivalently  |𝑐||𝑠𝑛 − 𝑠| <  𝜖   or   |𝑠𝑛 − 𝑠| <
𝜖

|𝑐|
 .  

 

     Since lim
𝑛→∞

𝑠𝑛 = 𝑠, we know for any 𝜖 > 0  we can find an 𝑁 such that 𝑛 ≥ 𝑁    

     implies:      |𝑠𝑛 − 𝑠| <
𝜖

|𝑐|
 .     

     Thus for that 𝑁,  𝑛 ≥ 𝑁 implies:    |𝑐||𝑠𝑛 − 𝑠| <  𝜖   or   |c𝑠𝑛 − 𝑐𝑠| <  𝜖   

     Thus lim
𝑛→∞

𝑐 𝑠𝑛 = 𝑐𝑠. 

 

2.   Given any 𝜖 > 0  we need to show that there is 𝑁 such that 𝑛 ≥ 𝑁 implies:     

     |(𝑐 + 𝑠𝑛) − (𝑐 + 𝑠)| <  𝜖   or equivalently  |𝑠𝑛 − 𝑠| < 𝜖 

     Since lim
𝑛→∞

𝑠𝑛 = 𝑠, we know for any 𝜖 > 0  we can find an 𝑁′ such that 𝑛 ≥ 𝑁′ 

     implies:      |𝑠𝑛 − 𝑠| <  𝜖.   

     If we take 𝑁 = 𝑁′, then 𝑛 ≥ 𝑁 implies:      |(𝑐 + 𝑠𝑛) − (𝑐 + 𝑠)| <  𝜖.    

 


