Sequences- HW Problems

- 1. Using the ϵ -N definition of a convergent sequence, prove the following (you cannot use any theorems about convergent sequences):
- $a. \quad \lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2}$
- $b. \quad \lim_{n\to\infty}\frac{1}{n^2}=0$
- c. $\lim_{n \to \infty} \ln \left(\frac{n+1}{n} \right) = 0$
- d. $\lim_{n\to\infty} \ln\left(\frac{n}{n+1}\right) = 0$
- e. $\lim_{n\to\infty} e^{\left(\frac{n+1}{n}\right)} = e$ $\left(\frac{n+1}{n}\right)$ is the exponent of e)
- 2. Using the definition of a convergent sequence, prove $\lim_{n\to\infty}\frac{2n}{3n+1}\neq\frac{1}{3}$.
- 3. Let $\{a_i\}$ be a sequence in \mathbb{R} . Prove $\lim_{n\to\infty}a_n=0$, if and only if, $\lim_{n\to\infty}|a_n|=0$.
- If $\lim_{n\to\infty} |a_n| = 1$, is it true that $\lim_{n\to\infty} a_n = 1$? Prove your answer.
- 4. Let $\{a_i\}$ be a sequence in a metric space X,d. Prove with an ϵ -N argument that $\lim_{n\to\infty}a_n=p$ if and only if $\lim_{n\to\infty}d(a_n,p)=0$.

- 5. $\{a_i\}$ is a sequence in $\mathbb R$ such that $\lim_{n\to\infty}a_n=0$. Suppose that $\{b_i\}$ is a sequence in $\mathbb R$ such that $|b_i|\le M$, for all i where $M\ge 0$. Prove from the definition of a limit of a sequence that $\lim_{n\to\infty}(a_nb_n)=0$.
- 6. Suppose $\{p_i\}$ and $\{q_i\}$ are sequences of real numbers such that $\lim_{n\to\infty}p_n=p$ and $\lim_{n\to\infty}q_n=q$. Give an ϵ -N proof that $\lim_{n\to\infty}(p_n+4q_n)=p+4q$.
- 7. Let X=C[0,1]= the set of real valued, continuous functions on [0,1]. Define a metric on X by $d\big(f(x),g(x)\big)=\max_{x\in[0,1]}|f(x)-g(x)|$. Let $\{f_n(x)\}$ be a sequence of function in X given by $f_n(x)=\frac{x}{n}$. Thus $f_1(x)=x,\ f_2(x)=\frac{x}{2},\ f_3(x)=\frac{x}{3},\ f_4(x)=\frac{x}{4},\ \text{etc.}$ Using The definition of a convergent sequence in a metric space prove that $\lim_{n\to\infty}f_n(x)=0$ (i.e. $\lim_{n\to\infty}f_n(x)=f(x)=0$).