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                                                       Compact Sets and Connected Sets 

 

Compact Sets 

Def.   By an open cover of a set 𝐸 ⊆ 𝑋, a metric space, we mean a collection  

{𝐺𝛼} of open sets in 𝑋 such that  𝐸 ⊆ ⋃ 𝐺𝛼𝛼 . 

 

 

 

 

 

 

 

 

 

                                                            

                                              

 

 

Ex.   Let 𝐺𝑖 = (0, 𝑖) ⊆ ℝ.   Then {𝐺𝑖}𝑖=1
∞   is an open cover of (0, ∞)  (it’s also an 

open cover of (0, 𝑛), [1,7], 𝑒𝑡𝑐. ) 

𝐺1 = (0,1)  

𝐺2 = (0,2)  

𝐺3 = (0,3)  

⋮  
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Ex.   Let 𝐺𝑖 = {(𝑥, 𝑦)| (𝑥 − 𝑖)2 + 𝑦2 < 1},   𝑖 = 0,1,2,3.   {𝐺𝑖}𝑖=0
3  is an open 

cover of  𝑅 = {(𝑥, 𝑦)| 0 ≤ 𝑥 ≤ 3.5, 0 ≤ 𝑦 ≤
1

2
}. 

 

 

 

 

 

 

 

Def.  A subset 𝐾 ⊆ 𝑋, 𝑑 is said to be compact if every open cover contains a 

finite subcover. 

This means that if {𝐺𝛼} is any open cover of 𝐾, i.e., 𝐾 ⊆ ⋃ 𝐺𝛼𝛼 ,  then there 

exist 𝐺𝑖1
, 𝐺𝑖2

, … , 𝐺𝑖𝑛
 such that 𝐾 ⊆ 𝐺𝑖1

∪ 𝐺𝑖2
∪ … ∪ 𝐺𝑖𝑛

. 

 

 

 

 

 

 

 

 

 

                       Open Cover of 𝐾                                                    Finite Subcover of 𝐾 
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Ex.   Let 𝐾 = (0,1) ⊆ ℝ.  Show 𝐾 is not compact. 

 

To show a set is not compact we just need to show that we can find an open 

cover that does not have a finite subcover. 

Let  𝐺𝑖 = (
1

𝑖+2
,

1

𝑖
).   So we have: 

𝐺1 = (
1

3
, 1),   𝐺2 = (

1

4
,

1

2
),    𝐺3 = (

1

5
,

1

3
),    𝐺4 = (

1

6
,

1

4
),  … 

 

 

 

 

Notice that  ⋃ 𝐺𝑖 = (0,1)∞
𝑖=1  , therefore, {𝐺𝑖} is an open cover of (0,1). 

 

Suppose there was a finite subcover of the {𝐺𝑖}, made up of the intervals: 

     (𝑎1, 𝑏1),  (𝑎2, 𝑏2),   (𝑎3, 𝑏3), …, (𝑎𝑛, 𝑏𝑛).  

 

Let  𝑚 = min( 𝑎1, 𝑎2, … , 𝑎𝑛). 

Then the number  
𝑚

2
∉⋃ (𝑎𝑖, 𝑏𝑖)𝑛

𝑖=1 , but  
𝑚

2
∈ (0,1).   

Hence, (𝑎1, 𝑏1),  (𝑎2, 𝑏2),   (𝑎3, 𝑏3), …, (𝑎𝑛, 𝑏𝑛) is not an open cover of 

(0,1). 

Thus 𝐾 is not compact.  

 

               (    (    ()     ()            )                                            )  ( 
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Theorem:  Compact subsets of metric spaces are closed. 

 

Proof:  Let 𝐾 ⊆ 𝑋, 𝑑 be a compact subset of a metric space 𝑋. 

             In order to show that 𝐾 is closed, we will show that 𝐾𝑐 is open. 

Suppose 𝑝𝜖𝑋, but 𝑝 ∉ 𝐾, and 𝑞𝜖𝐾. 

                              

For each point 𝑞𝜖𝐾,  let 𝑉𝑞  and 𝑊𝑞 

be neighborhoods of 𝑝 and 𝑞 with 

radii less than 
1

2
𝑑(𝑝, 𝑞). 

 

Thus we know 𝑉𝑞 ∩ 𝑊𝑞 = ∅. 

We also have that    𝐾 ⊆ ⋃ 𝑊𝑞𝑞𝜖𝐾 ;    

Since 𝐾 is compact we know that there is some finite number of 𝑞𝑖 ′𝑠 with: 

𝐾 ⊆ ⋃ 𝑊𝑞𝑖

𝑛
𝑖=1 . 

Let 𝑉 = 𝑉𝑞1
∩ 𝑉𝑞2

∩ … ∩ 𝑉𝑞𝑛
.   

 

 

 

 

 

 

𝑋 

𝐾 𝑞 

𝑊𝑞  

𝑝 

𝑉𝑞  

𝐾 𝑞1 
𝑞2 

𝑞3 

𝑊𝑞1
 𝑊𝑞2

 

𝑊𝑞3
 

𝑝 𝑉𝑞3
 

𝑉𝑞2
 

𝑉𝑞1
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 𝑉 is an open set (finite intersection of open sets) containing 𝑝 and 𝑉 does not 

intersect  𝐾:    If 𝑥𝜖𝐾 then 𝑥𝜖𝑊𝑞𝑖
 for some i.  But 𝑉𝑞𝑖

∩ 𝑊𝑞𝑖
= ∅.  So 𝑥 ∉ 𝑉𝑞𝑖

 

and hence 𝑥 ∉ 𝑉𝑞1
∩ 𝑉𝑞2

∩ … ∩ 𝑉𝑞𝑛
= 𝑉. 

Thus 𝑉 ⊆ 𝐾𝑐 and 𝐾𝑐 is open. 

Since 𝐾𝑐  is open, 𝐾 is closed. 

 

 

Theorem:  Closed subsets of compact sets are compact. 

 

Proof:  Let 𝐹 be a closed subset of a compact set 𝐾 ⊆ 𝑋, 𝑑 a metric space. 

Let {𝑉𝛼} be an open cover of 𝐹 ⊆ 𝐾. 

Since 𝐹 is closed, 𝐹𝑐 is open. 

𝐹𝑐 ∪𝛼 𝑉𝛼 is now an open cover of 𝐾 (as well as 𝐹). 

 

 

 

 

 

 

 

 

Since 𝐾 is compact, we know there we only need a finite number of 𝐹𝑐 ∪𝛼 𝑉𝛼 to 

cover 𝐾. 

𝐾 

𝑋 

𝑉𝛼 

𝐹 
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Case 1:        𝐹 ⊆ 𝐾 ⊆ 𝐹𝑐 ∪ 𝑉𝛼1
∪ 𝑉𝛼2

∪ … ∪ 𝑉𝛼𝑛
 

But 𝐹𝑐 ∩ 𝐹 = ∅,  so 𝐹𝑐 is not need to cover 𝐹. 

Hence 𝐹 ⊆ 𝑉𝛼1
∪ 𝑉𝛼2

∪ … ∪ 𝑉𝛼𝑛
,  which is a finite subcover of {𝑉𝛼}  

 

Case 2:     𝐹 ⊆ 𝐾 ⊂ 𝑉𝛼1
∪ 𝑉𝛼2

∪ … ∪ 𝑉𝛼𝑛
  (we don’t need 𝐹𝑐) 

In this case 𝑉𝛼1
∪ 𝑉𝛼2

∪ … ∪ 𝑉𝛼𝑛
 is already a finite subcover of {𝑉𝛼}. 

In either case we have shown that 𝐹 is compact.  

 

This theorem implies that finite intersections of compact sets are compact.  

 

Theorem:  Every compact subset 𝐸 of a metric space 𝑋 is bounded. 

 

Proof:   Let {𝐺𝛼} be a collection of open sets 𝐺𝛼 = 𝑁1

2

(𝑥𝛼), where 𝑥𝛼𝜖𝐸. 

              Thus,   𝐸 ⊆ ⋃ 𝐺𝛼𝛼 . 

Since 𝐸 is compact we can find a finite subcover 𝐸 ⊆ 𝐺𝛼1
∪ 𝐺𝛼2

∪ … ∪ 𝐺𝛼𝑛
. 

Take 𝑥𝛼1
𝜖𝐺𝛼1

, where 𝑥𝛼1
 is the center of 𝐺𝛼1

= 𝑁1

2

(𝑥𝛼1
). 

 

 

 

 

 

𝑥𝛼1
 

𝐺𝛼1
 

𝑥𝛼2
 𝑥𝛼3

 

𝐺𝛼2
 𝐺𝛼3

 

𝑥𝛼4
 

𝐺𝛼4
 

𝑦 

𝐸 
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Then if 𝑦𝜖𝐸, 𝑦 ∈ 𝐺𝛼𝑗
, for some 1 ≤ 𝑗 ≤ 𝑛.   

Then by the triangle inequality we have:  

                𝑑(𝑥𝛼1
, 𝑦) ≤ ∑ 𝑑(𝑥𝛼𝑖

𝑗−1
𝑖=1 , 𝑥𝛼𝑖+1

) +
1

2
≤ ∑ 𝑑(𝑥𝛼𝑖

𝑛
𝑖=1 , 𝑥𝛼𝑖+1

) +
1

2
  

 so 𝐸 is bounded. 

 

Heine-Borel Theorem:  If 𝐸 is a set in ℝ𝑛 then 𝐸 is compact if and only if 𝐸 is 

closed and bounded. 

 

 

Ex.  Identify which of the following subsets of ℝ2 are compact: 

 

𝐴 = {(𝑥, 𝑦)| |𝑥| ≤ 2,   |𝑦| ≤ 1}                  Yes, closed and bounded 

𝐵 = {(𝑥, 𝑦)|  |𝑥| = 2, |𝑦| ≤ 1}                   Yes, closed and bounded 

𝐶 = {(𝑥, 𝑦)|  |𝑥| = 2, |𝑦| ≥ 1}                    No, not bounded 

𝐷 = {(𝑥, 𝑦)| 0 < 𝑥2 + 𝑦2 ≤ 4}                   No, not closed 

𝐸 = {(𝑥, 𝑦)||𝑥| = 3}                                      No, not bounded 

𝐹 = {(0,0), (0,1), (1,0)}                                Yes, closed and bounded 
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Connected Sets                                                

Def. Two subsets 𝐴, 𝐵 of a metric space 𝑋, 𝑑 are said to be separated if               

𝐴 ∩ 𝐵̅ = ∅  and  𝐴̅ ∩ 𝐵 = ∅  (i.e., no point of 𝐴 lies in the closure of 𝐵 and no 

point of 𝐵 lies in the closure of 𝐴). 

Def.  A set 𝐸 ⊆ 𝑋, 𝑑 a metric space is said to be connected if 𝐸 is not the union 

of two nonempty separated sets. 

 

Ex.  if 𝐴 = (0,1)  and  𝐵 = (1,2) , then 𝐴 and 𝐵 are separated sets since               

       𝐴̅ = [0,1], 𝐵̅ = [1,2]                                                                                                     

       thus:                                    𝐴 ∩ 𝐵̅ =  (0,1) ∩ [1,2] = ∅  and                                                                 

                                              𝐴̅ ∩ 𝐵 =  [0,1] ∩ (1,2) = ∅.                                                                               

       Thus the set 𝐴 ∪ 𝐵 = (0,1) ∪ (1,2) is not a connected set.  

 

Ex.  If 𝐴 = (0,1] and 𝐵 = (1,2), then 𝐴 and 𝐵 are not separated since                 

      𝐵̅  = [1,2] and thus  

                                 𝐴 ∩ 𝐵̅ = (0,1]∩ [1,2] = {1} ≠ ∅  

 (notice that 𝐴̅ ∩ 𝐵 = [0,1] ∩ (1,2) = ∅). 

 

Theorem:  A subset 𝐸 ⊆ ℝ is connected if and only if , if 𝑥𝜖𝐸, 𝑦𝜖𝐸 and           

𝑥 < 𝑧 < 𝑦 then 𝑧𝜖𝐸. 
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Ex.  The Cantor Set is a subset of the interval [0,1], with very interesting 

properites.  Here’s how it’s created. 

Let 𝐼 = [0,1].    Remove the open middle third segment  (
1

3
,

2

3
) and let 

𝐸1 = [0,
1

3
] ∪ [

2

3
, 1]. 

 

 

 

 

Now remove the open middle thirds of each part above.  Let 

𝐸2 = [0,
1

9
] ∪ [

2

9
,

1

3
] ∪ [

2

3
,

7

9
] ∪ [

8

9
, 1].  

 

 

 

 

 

Continue this way always removing open middle thirds of each segment to get  

𝐸1 ⊇ 𝐸2 ⊇ 𝐸3 ⊇ ⋯ .  The Cantor set is defined to be: 

𝐶 = ⋂ 𝐸𝑖

∞

𝑖=1

 

where 𝐸𝑛 is the union of 2𝑛 intervals, each of length 3−𝑛. 

 

𝐸1 

𝐸1 

𝐸2 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjdk-H64K3hAhVkh-AKHRULBKUQjRx6BAgBEAU&url=https://blancosilva.wordpress.com/puzzles/the-cantor-set/&psig=AOvVaw24jxW2rq3Kpq6JYHJswnua&ust=1554168868673666
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjdk-H64K3hAhVkh-AKHRULBKUQjRx6BAgBEAU&url=https://blancosilva.wordpress.com/puzzles/the-cantor-set/&psig=AOvVaw24jxW2rq3Kpq6JYHJswnua&ust=1554168868673666
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Properites of the Cantor set. 

1.  𝐶 is compact because since each of the 𝐸𝑖’s is closed (a finite union of 

closed sets), 𝐶 = ⋂ 𝐸𝑖
∞
𝑖=1  is also closed.  But 𝐶 is also a bounded subset of 

ℝ, so 𝐶 is also compact.    

 

 

 

2. Let 𝑥 = 0. 𝑎1𝑎2𝑎3 … be a base 3 expansion of any number 𝑥 ∈ [0,1], i.e. 

𝑥 = ∑
𝑎𝑖

3𝑖
∞
𝑖=1  ;  where 𝑎𝑖 = 0, 1, 𝑜𝑟 2.  Then 𝑥 ∈ 𝐶 if and only if 𝑎𝑖 = 0 𝑜𝑟 2.  

 

 

 

 

 

3. 𝐶 is uncountable.  Suppose 𝐶 is countable, then 𝐶 = {𝑥1, 𝑥2, 𝑥3, … }. 

𝑥1 = 0. 𝑎11𝑎12𝑎13 …  

𝑥2 = 0. 𝑎21𝑎22𝑎23 …  

⋮  

𝑥𝑘 = 0. 𝑎𝑘1𝑎𝑘2𝑎𝑘3 …  

⋮  
where 𝑎𝑖𝑗 = 0 𝑜𝑟 2  for all 𝑖, 𝑗.  

 

 

Let 𝑦 = 0. 𝑏1𝑏2𝑏3 … 

where    𝑏𝑖 = 0  if   𝑎𝑖𝑖 = 2 

                  = 2  if   𝑎𝑖𝑖 = 0 
Then 𝑦 is not equal to 𝑥𝑘  for any 𝑘, which is a contradiction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

4. 𝐶 has “measure” (i.e., “length”) 0. 

[0,1] has length 1.  Let’s add up the lengths of the sets removed from [0,1] 

to create the Cantor set.   

Length of sets removed from [0,1] =
1

3
+

2

9
+

4

27
+ ⋯ +

2𝑛−1

3𝑛 + ⋯ 

                                                         =
1

3
(1 +

2

3
+

4

9
+ ⋯ +

2𝑛

3𝑛 + ⋯ ) 

                                                          =
1

3
(

1

1−
2

3

) = 1.                                        

Thus, the Cantor set must have measure (i.e., length) 0.  Thus the Cantor 

set is an uncountable set (i.e. it can be put in 1-1 correspondence with 

[0,1]) with measure 0! 

 

 

 

5. 𝐶 contains no intervals.  That is, no subset of 𝐶 is connected. 

If 𝐶 did contain any interval (𝑎, 𝑏), 𝑏 > 𝑎,  then the measure of 𝐶 couldn’t 

be 0 since the measure of (𝑎, 𝑏) is |𝑏 − 𝑎| > 0. 


