Open and Closed Sets in a Metric Space

Theorem: If p is a limit point of a set E, then every neighborhood of p contains
infinitely many points of E.

Proof: Thisis a proof by contradiction. We start by assuming that the theorem is
false and derive a contradiction.

Assume that there is a neighborhood N of p, a limit point of E, that contains
only a finite number of points of E. Let’s call those points

q1,92,93, - » qneN N E, where q; # p forall i.
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Letr = min d(p, q,,) > 0.
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Then the neighborhood Nr(p) contains no pointin E.
2

But then, p is not a limit point of E (recall that p is a limit point of E if every
neighborhood of p contains a point g # p such that geE).

This contradicts the assumption that p is a limit point of E.

Thus the assumption that there is a neighborhood N of p that contains only a
finite number of points of E, is false.

Hence every neighborhood of p contains infinitely many points of E.



Theorem: A set E is open if and only if its complement is closed.

Proof: We have to prove 2 statements here:

1. If ECis closed then E is open

2. If E is open then E€ is closed

Proof of #1: We assume E°€ is closed and we have to prove that E is open.

To prove E is open we need to show that given any point xeE, we can find a
neighborhood of x, N, such that N C E.

Since xeE, x ¢ E° (by definition of a complement)

Since E€ is closed (by assumption), E€ contains all of its limit points, thus x is not
a limit point of E€.

Since x is not a limit point of E€, there exists a neighborhood, N, of x such that:

NNE®=@. ButthismeansN € E, and thus x is an interior point of E and
E is open.
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Proof of #2: We assume E is open and we need to prove E€ is closed.

To prove E€ is closed we will show that E€ contains all of its limit points
(definition of a closed set).

Let x be a limit point of E€. Then every neighborhood of x contains a point yeE*.
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Since every neighborhood of x contains a point yeE®, x is not an interior point of
E (if x were an interior point of E, you could find a neighborhood, N, of x such
that N € E).

Since E is open, by assumption, x & E (since all points of an open set are interior
points).

Since x € E, by definition, xeE€. Hence E°€ is closed.

Corollary: A set F is closed if and only if F€ is open.

Proof: By the theorem we just proved, a set E is open if and only if E€ is closed.
This means that a set F€ is open if and only if (F€)¢ = F is closed.

That’s the same as saying: a set F is closed if and only if F¢ is open.

This corollary is very useful. We will often prove a set is closed by showing that
its complement is open.



Ex. Let X = R with the standard metric be a metric space
a. Prove (0,1) € Ris an open set.
b. Prove (—o0,0] U[1,0) € Ris a closed set

c. Prove [0,1] € Ris a closed set.

a. Toshow (0,1) € Ris an open set, we must show that for every xe(0,1) we
can find a neighborhood N,.(x) < (0,1).

Since 0 < x < 1, let N,.(x) = Nx(x) if 0 <x < %
2

= Nix(x) if %<x<1
2
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Now we must show that N,-(x) < (0,1).

If0 < x S% then Nx(x) = {p| |x — p| < g} That’s the same as:
2

—g <x—p< g; Now subtract x from all quantities:
3
—7x <-p< —g Multiply the inequality by -1
3x X . 1
7>p>5 Slnce0<xSEwehave:
3.3
2>Z>p>3I>0
4 2 2



If % <x<1thenNi—x(x) ={p| |x—p| < 1;—x} That’s the same as:

2

— (17) <x-—p < o Which is the same as:
XT_l <x—p< % subtract x from all quantities:
—x2—1 <-p< 173x Multiply the inequality by -1
X+l 1 Since % <x <1 wehave:
x+1 -1_ 1

-
So Nix(x) C (0,1).
2

Thus (0,1) is open.

b. To show (—o,0] U [1,) € Ris a closed set, we just need to show that its
complement is open. The complement of this set is (0,1), which we just showed
is open. Thus (—o0,0] U [1,) € Ris a closed set. We could also have shown
that (—o, 0] U [1, o) € R contains all of its limit points.

c. Toprove [0,1] € Ris a closed set, we can either show that [0,1] contains all
of its limit points or show that its complement is open. This time we will show
that the complement of [0,1], [0,1]¢, is open.

To show that [0,1]€ is open we must show that given any point x € [0,1]¢ we can
find a neighborhood, N(x) < [0,1]¢.

Let’s assume that x is in the complement of [0,1], so x & [0,1].

Since x & [0,1], then eitherx > 1 orx < O.



Casel: x> 1

-1
Take a neighborhood of x given by Nx-1(x) = {p||x — p| < xT}
2

x—-1 )
Note: T is half the distance from x to 1.

Now we have to show that Nx-1(x) € [0,1]¢.
2
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Nx-1(x) = {pllx — p| < xT_l} is the same as:

2

-1 -1
—xT <x—p< xT which is the same as:

1-x x—1 "
—~ <x—p< — Subtract x from all quantities
1-3 —x—1

> ad <-—-p< xz multiply by -1
3x—1 1

xz >p > % Since x > 1 we have:
3x—1 1
—>p>E->1 Sop & [0,1]

which means that Nx-1(x) € [0,1]€.
2



Case2: x <0

2

Take a neighborhood of x given by Nx(x) = {p| |x — p| < %}

Note: l;c—l is % the distance from x to 0.
N jx (x)
\
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Nix(x) = {pl[x —pl < %} is the same as:
2

|x—p|<m since x < 0 we know X = %
2 2 2
X — = which is the same as:
lx —pl <
X —X ey
> <x—p< - Subtract x from all quantities
— -3
7" <-p< Tx Multiply by -1
3
§>p>7x sincex < 0 we have
3
0>>>p>=— Sop & [0,1]

which means that Nix(x) € [0,1]¢

2

Thus [0,1]€ is open.



The next theorem is a generalization of one of De Morgan’s laws,
(AU B)¢ = A° N B, which is illustrated below.

E

AUB

(AU B)¢

Therefore, (A U B)¢ = A° N B€. A° N B¢



Theorem: Let{E,} be a (finite or infinite) collection of sets E,. Then

(Ug a) = Ng (E)-

Proof: We will do this by first showing that (U, E ) C Ny (ES).
Then we will show that N, (ES) € (U, Ea)c.

This implies that (U, a) = Ng (E).

Let’s show (U, a) € Ng (EQ).

c
Ifxe(U, E;) thenx & U, E, by definition of a complement.

Thus x € E, forany a (otherwise x would be in U, E,)
Therefore, eraC for all .

That means that xe N, E,¢ (definition of intersection)

Hence (Uq a) S Na (Eg)
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C
Now let’'s show Ny (ES) S (Ug Eg) -
Let xe N, (ES). Then by definition of intersection, x€Eg for every a.

Thusx & E, forany a.

That meansthatx € U, E,.

c
That means that xe(U, Ey)

by the definition of complement.
C
Thus Ng (Eccr) C (Ug Eq)

Hence, (U, Ea)c = Ng (Eg).

Theorem:

a. For any collection {G,} of open sets (this could be a finite collection or

infinite, even uncountably infinite collection) U, G, is open.
b. For any collection {F,} of closed sets 1, F, is closed.
c. Forany finite collection of open sets {G;}, Nj=, G; is open.

d. For any finite collection of closed sets {F;}, U?=1 F; is closed.
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Proof:

a. LetG = U, G,, where G, is open for all a. To show G is open we need to
show that for any xeG we can find a neighborhood of x that lies completely in G.

If xeG, then x must lie in some open set G, .

Since G, is open, there exists some neighborhood N of x that lies entirely in G, .

That neighborhood N also liesin G = U, G,,.

Hence G is open.

b. To prove for any collection {F,} of closed sets [, F, is closed, we note that
the previous theorem stated that for a collection of sets {E,},

C
(Ug Ez) = Ng (Eg).
Now let E, = F,° and hence E§ = F,.
Now substituting into the above equation:
c C
(Ug F27) = Ng ().

Since F, is closed for all @, F,,“ must be open for all .
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By part “a” of this theorem, U, Fac is also open.

C
Since Uy F,“ isopen, (U, E,°) must be closed since it’s the complement of
an open set.

Thus, since (U, Fac)c = Ny (F,), Ng(F,) isalso closed.

c. Toshow that for any finite collection of open sets {G;}, Ni=, G; is open, it
helps to think about the argument for 2 open sets (it is often helpful when trying
to prove most propositions involving n “things” to see how the argument works
whenn = 2).

Suppose (1 and G, are open sets. Let’s show G; N G5, is open.
If G1 N G (or N G;) is empty, then G; N G, (or Ni=; G;) is open.

If G1 N G, is not empty, then let’s choose any point XxeG; N G, and show it’s an
interior point (and hence G; N G, is open).

Since xeG1 N G,, xeGq and xeG,.

Because G, is open, we can find

neighborhood around xeG,, N (x),

such that N (X)< G;.

Because (G is open, we can find

a neighborhood around x€G,, Ny, (x),
such that N, ()< G».

Now let 7 = min( 7y, 73). We now have that N,.(x) € Gq,and N,.(x) € G>.
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So N,.(x) © G1 N G,. This means that x is an interior point for G; N G, and
hence G N G, is open.

To prove that for any finite collection of open sets {Gi}, ﬂ?ﬂ G; is open, we use
the same argument but now r = min( 7y, 1y, ..., 73,)-

d. To show that for any finite collection of closed sets {F;}, Ui, F; is closed,
we can use the fact that a set is closed if and only if its complement is open. So

let’s show that (Uj=, F;)€ is open.
. n — n Cc
From an earlier theorem we know that (U;—; F;)¢ = N;=1(F;") .

Since each Fj is close, we know that each Fic must be open.

From part c we know that the finite intersection of open sets is open, thus
* L(F%)isopen.

since (Ufeq F)¢ = Ni=1 (%), (Uf=q ;)¢ is open.

Now we know that means that U?=1 F; is closed.

Ex. We need finiteness in both c and d in the previous theorem.

N;2,(— %,%) = {0} which is not open.

U?il[%, 1] = (0,1] which is not closed.

Def. Let X, d be a metric space. If E € X, and if E' denotes the set of all limit
points of E in X, then the closure of E, E=E U E’.
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Theorem: If X, d is a metric space and E € X, then

a. E isclosed
b. E if and only if E is closed

=F
c. E C F foreveryclosedset F € X suchthatE C F.

Proof:
a. To show E is closed, we will show that (E)¢ is open.

Let’s choose any point peX where p & E (ie pE(E)C). We just need to show
that p is an interior point.

Since E=E U E’, pis neither in E nor a limit point of E. Hence there is a
neighborhood of p, N(p), that doesn’t intersect E.

(Yop)

M)~

X=EUE®

N (p) can’tintersect E’ either. To see this, suppose thereisay € E' N N(p),
then there is a neighborhood around y, M (y), that lies inside of N (p)SE€,
since N(p) is open.

But since y is a limit point of E, M (y) must intersect E, which means that
N (p)SEF€ intersects E, which is a contradiction (E N E€ = @, by definition).
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Thus that neighborhood N (p) lies completely in (E)¢ , hence (E)€ is open and

thus E is closed.

b. First we show if E = E then E is closed. That’s follows from part a.

Now we show if E is closed then E = E.

If E is closed then E contains all of its limit points (by definition).

Hence E = E UE' =E,

c. Toshow that E C F for every closed set F € X suchthatE C F,
assume that F isaclosed setsuchthat E € F € X.

Since F is closed, it contains all of its limit points, F'.

But since E € F, any limit point of E is also a limit point of F.

Hence F contains all limit point of E, thus E C F.



