
1 
 

                             Open and Closed Sets in a Metric Space 

 

Theorem:  If 𝑝 is a limit point of a set 𝐸, then every neighborhood of 𝑝 contains 

infinitely many points of 𝐸. 

 

Proof:   This is a proof by contradiction.  We start by assuming that the theorem is 

false and derive a contradiction. 

     Assume that there is a neighborhood 𝑁 of 𝑝, a limit point of 𝐸, that contains 

only a finite number of points of 𝐸.  Let’s call those points 

 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛𝜖𝑁 ∩ 𝐸, where 𝑞𝑖 ≠ 𝑝 for all 𝑖. 

 

 

 

 Let 𝑟 = min
1≤m≤n

d(𝑝, 𝑞𝑚) > 0. 

Then the neighborhood  𝑁𝑟

2
(𝑝) contains no point in 𝐸.   

But then, 𝑝 is not a limit point of 𝐸 (recall that p is a limit point of 𝐸 if every 

neighborhood of 𝑝 contains a point 𝑞 ≠ 𝑝 such that 𝑞𝜖𝐸).   

 

This contradicts the assumption that 𝑝 is a limit point of 𝐸.   

 

Thus the assumption that there is a neighborhood 𝑁 of 𝑝 that contains only a 

finite number of points of 𝐸, is false.   

 

Hence every neighborhood of 𝑝 contains infinitely many points of 𝐸. 

 

 

 

𝑝 𝑞1 𝑞2 𝑞3 𝑞4 

( ) ( ) 

𝑁𝑟
2

(𝑝) 
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Theorem:  A set 𝐸 is open if and only if its complement is closed. 

 

Proof:  We have to prove 2 statements here: 

1.   If 𝐸𝑐 is closed then 𝐸 is open 

2.   If 𝐸 is open then 𝐸𝑐 is closed 

Proof of #1:  We assume 𝐸𝑐 is closed and we have to prove that 𝐸 is open.  

To prove 𝐸 is open we need to show that given any point 𝑥𝜖𝐸, we can find a 

neighborhood of 𝑥, 𝑁, such that 𝑁 ⊆ 𝐸. 

 

Since 𝑥𝜖𝐸,   𝑥 ∉ 𝐸𝑐 (by definition of a complement) 

Since 𝐸𝑐 is closed (by assumption), 𝐸𝑐 contains all of its limit points, thus 𝑥 is not 

a limit point of 𝐸𝑐. 

Since 𝑥 is not a limit point of 𝐸𝑐, there exists a neighborhood, 𝑁, of 𝑥 such that: 

        𝑁 ∩ 𝐸𝑐 = ∅ .    But this means 𝑁 ⊆ 𝐸, and thus 𝑥 is an interior point of 𝐸 and 

𝐸 is open. 

 

Proof of #2:  We assume 𝐸 is open and we need to prove 𝐸𝑐 is closed. 

To prove 𝐸𝑐 is closed we will show that 𝐸𝑐 contains all of its limit points 

(definition of a closed set). 

Let 𝑥 be a limit point of 𝐸𝑐.  Then every neighborhood of 𝑥 contains a point 𝑦𝜖𝐸𝑐. 

 

[ ] 
𝐸𝑐  

𝑥 
( ) 

𝑁 

( ) 
𝐸 𝐸𝑐  

𝑥     𝑦 
( ) 

𝑁 
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Since every neighborhood of 𝑥 contains a point 𝑦𝜖𝐸𝑐,  𝑥 is not an interior point of 

𝐸 (if 𝑥 were an interior point of 𝐸, you could find a neighborhood, 𝑁, of 𝑥 such 

that 𝑁 ⊆ 𝐸). 

Since 𝐸 is open, by assumption, 𝑥 ∉ 𝐸 (since all points of an open set are interior 

points).   

Since 𝑥 ∉ 𝐸, by definition, 𝑥𝜖𝐸𝑐.   Hence 𝐸𝑐 is closed. 

 

Corollary:  A set 𝐹 is closed if and only if 𝐹𝑐 is open. 

 

Proof: By the theorem we just proved, a set 𝐸 is open if and only if 𝐸𝑐 is closed. 

This means that a set 𝐹𝑐 is open if and only if (𝐹𝑐)𝑐 = 𝐹 is closed. 

That’s the same as saying: a set 𝐹 is closed if and only if 𝐹𝑐 is open. 

 

     This corollary is very useful.  We will often prove a set is closed by showing that 

its complement is open. 
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Ex.   Let 𝑋 = ℝ with the standard metric be a metric space 

        a.  Prove (0,1) ⊆ ℝ is an open set. 

        b.   Prove  (−∞, 0] ∪ [1, ∞) ⊆ ℝ is a closed set 

        c.   Prove [0,1] ⊆ ℝ is a closed set. 

 

a.   To show (0,1) ⊆ ℝ is an open set, we must show that for every 𝑥𝜖(0,1) we 

can find a neighborhood 𝑁𝑟(𝑥) ⊆ (0,1). 

Since 0 < 𝑥 < 1, let 𝑁𝑟(𝑥) = 𝑁𝑥

2

(𝑥)         if  0 < 𝑥 ≤
1

2
 

                                                   = 𝑁1−𝑥

2

(𝑥)     if   
1

2
< 𝑥 < 1 

 

 

 

 

Now we must show that 𝑁𝑟(𝑥) ⊆ (0,1). 

If 0 < 𝑥 ≤
1

2
  then  𝑁𝑥

2

(𝑥) = {𝑝| |𝑥 − 𝑝| < 
𝑥

2
} .   That’s the same as:  

 

                    −
𝑥

2
< 𝑥 − 𝑝 <

𝑥

2
 ;              Now subtract 𝑥 from all quantities: 

                     −
3𝑥

2
< −𝑝 < −

𝑥

2
                 Multiply the inequality by -1 

                         
3𝑥

2
> 𝑝 >

𝑥

2
                          Since 0 < 𝑥 ≤

1

2
  we have: 

                     
3

4
≥

3𝑥

2
> 𝑝 >

𝑥

2
> 0. 

           So  𝑁𝑥

2

(𝑥) ⊆ (0,1) 

 

0              𝑥1                                  
1

2
                                    𝑥2           1 

( ) ( ) 

𝑁𝑟(𝑥1) 𝑁𝑟(𝑥2) 
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If   
1

2
< 𝑥 < 1  then 𝑁1−𝑥

2

(𝑥) = {𝑝|   |𝑥 − 𝑝| <
1−𝑥

2
} .  That’s the same as:  

 

                     − (
1−𝑥

2
) < 𝑥 − 𝑝 <

1−𝑥

2
           Which is the same as: 

                             
𝑥−1

2
< 𝑥 − 𝑝 <

1−𝑥

2
            subtract 𝑥 from all quantities: 

                              
−𝑥−1

2
< −𝑝 <

1−3𝑥

2
            Multiply the inequality by -1 

                                
𝑥+1

2
> 𝑝 >

3𝑥−1

2
                Since  

1

2
< 𝑥 < 1   we have: 

                          1 >
𝑥+1

2
> 𝑝 >

3𝑥−1

2
>

1

4
 . 

So  𝑁1−𝑥

2

(𝑥) ⊆ (0,1). 

Thus (0,1) is open. 

 

b.   To show (−∞, 0] ∪ [1, ∞) ⊆ ℝ is a closed set, we just need to show that its 

complement is open.  The complement of this set is (0,1), which we just showed 

is open.  Thus (−∞, 0] ∪ [1, ∞) ⊆ ℝ is a closed set.  We could also have shown 

that (−∞, 0] ∪ [1, ∞) ⊆ ℝ contains all of its limit points. 

 

c.   To prove [0,1] ⊆ ℝ is a closed set, we can either show that [0,1] contains all 

of its limit points or show that its complement is open.  This time we will show 

that the complement of  [0,1], [0,1]𝑐 , is open.  

To show that [0,1]𝑐 is open we must show that given any point 𝑥 ∈ [0,1]𝑐 we can 

find a neighborhood, 𝑁(𝑥) ⊆ [0,1]𝑐. 

 Let’s assume that 𝑥 is in the complement of [0,1], so 𝑥 ∉ [0,1]. 

 Since 𝑥 ∉ [0,1], then either 𝑥 > 1  or 𝑥 < 0. 

 



6 
 

Case 1:  𝑥 > 1 

Take a neighborhood of 𝑥 given by 𝑁𝑥−1

2

(𝑥) = {𝑝||𝑥 − 𝑝| <
𝑥−1

2
} 

Note: 
𝑥−1

2
 is half the distance from 𝑥 to 1. 

Now we have to show that 𝑁𝑥−1

2

(𝑥) ⊆ [0,1]𝑐. 

 

     𝑁𝑥−1

2

(𝑥) = {𝑝||𝑥 − 𝑝| <
𝑥−1

2
}  is the same as: 

              −
𝑥−1

2
< 𝑥 − 𝑝 <

𝑥−1

2
                  which is the same as: 

                  
1−𝑥

2
< 𝑥 − 𝑝 <

𝑥−1

2
                  Subtract 𝑥 from all quantities 

                  
1−3𝑥

2
< −𝑝 <

−𝑥−1

2
                  multiply by -1 

                  
3𝑥−1

2
> 𝑝 >

𝑥+1

2
                        Since  𝑥 > 1  we have: 

                 
3𝑥−1

2
> 𝑝 >

𝑥+1

2
> 1               So 𝑝 ∉ [0,1] 

 

which means that 𝑁𝑥−1

2

(𝑥) ⊆ [0,1]𝑐. 

 

 

 

 

 

[ ] 

0 1 𝑥 

( ) 

𝑁𝑥−1
2

(𝑥) 



7 
 

Case 2:   𝑥 < 0 

Take a neighborhood of 𝑥 given by    𝑁|𝑥|

2

(𝑥) = {𝑝| |𝑥 − 𝑝| <
|𝑥|

2
 }       

                                         Note:  
|𝑥|

2
 is 

1

2
 the distance from 𝑥 to 0. 

 

 

𝑁|𝑥|

2

(𝑥) = {𝑝| |𝑥 − 𝑝| <
|𝑥|

2
 }   is the same as: 

                 |𝑥 − 𝑝| <
|𝑥|

2
             since 𝑥 < 0 we know 

|𝑥|

2
= −

𝑥

2
 

                 |𝑥 − 𝑝| <
−𝑥

2
             which is the same as: 

            
𝑥

2
< 𝑥 − 𝑝 <

−𝑥

2
             Subtract 𝑥 from all quantities 

            
−𝑥

2
< −𝑝 <

−3𝑥

2
              Multiply by -1 

                
𝑥

2
> 𝑝 >

3𝑥

2
                  since 𝑥 < 0   we have 

             0 >
𝑥

2
> 𝑝 >

3𝑥

2
             So 𝑝 ∉ [0,1]    

which means that 𝑁|𝑥|

2

(𝑥) ⊆ [0,1]𝑐 

 

Thus [0,1]𝑐 is open. 

 

 

 

 

[                                             ] 

0 1 𝑥 

(             ) 

𝑁|𝑥|
2

(𝑥) 
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The next theorem is a generalization of one of De Morgan’s laws,                        

(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐, which is illustrated below. 

 

 

 

 

 

 

                   

                       

 

 

 

 

 

 

 

 

 

 

                                                                                                    

 

 

Therefore, (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐. 

 

𝐸 

 

𝐸 𝐸 

𝐸 𝐸 

𝐸 

𝐴                 𝐵   𝐴 𝐵 

𝐵 𝐴 𝐵 𝐴 

𝐵 𝐴 

𝐴 ∪ 𝐵 𝐴𝑐  

(𝐴 ∪ 𝐵)𝑐  𝐵𝑐  

𝐴𝑐 ∩ 𝐵𝑐  
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Theorem:   Let {𝐸𝛼}  be a (finite or infinite) collection of sets 𝐸𝛼.  Then 

                            (⋃ 𝐸𝛼)𝛼
𝑐

= ⋂ (𝐸𝛼
𝑐

𝛼 ).  

 

Proof:     We will do this by first showing that (⋃ 𝐸𝛼)𝛼
𝑐

⊆ ⋂ (𝐸𝛼
𝑐

𝛼 ). 

              Then we will show  that ⋂ (𝐸𝛼
𝑐

𝛼 ) ⊆ (⋃ 𝐸𝛼)𝛼
𝑐
.    

              This implies that (⋃ 𝐸𝛼)𝛼
𝑐

= ⋂ (𝐸𝛼
𝑐

𝛼 ). 

 

       Let’s show (⋃ 𝐸𝛼)𝛼
𝑐

⊆ ⋂ (𝐸𝛼
𝑐

𝛼 ).   

       If 𝑥𝜖(⋃ 𝐸𝛼)𝛼
𝑐
 then 𝑥 ∉ ⋃ 𝐸𝛼𝛼  by definition of a complement. 

 

 

 

 

 

 

 

 

 

      

  Thus 𝑥 ∉ 𝐸𝛼 for any 𝛼  (otherwise 𝑥 would be in ⋃ 𝐸𝛼𝛼 ) 

       Therefore,  𝑥𝜖𝐸𝛼
𝑐  for all 𝛼.   

       That means that  𝑥𝜖 ⋂ 𝐸𝛼
𝑐

𝛼    (definition of intersection) 

       Hence (⋃ 𝐸𝛼)𝛼
𝑐

⊆ ⋂ (𝐸𝛼
𝑐

𝛼 ) 

 𝑥 

∪𝛼 𝐸𝛼  
(∪𝛼 𝐸𝛼)𝑐  
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    Now let’s show ⋂ (𝐸𝛼
𝑐

𝛼 )   ⊆ (⋃ 𝐸𝛼)𝛼
𝑐
.    

    Let 𝑥𝜖 ⋂ (𝐸𝛼
𝑐

𝛼 ).   Then by definition of intersection,  𝑥𝜖𝐸𝛼
𝑐   for every 𝛼. 

    Thus 𝑥 ∉ 𝐸𝛼 for any 𝛼. 

 

    That means that 𝑥 ∉ ⋃ 𝐸𝛼𝛼 . 

     That means that  𝑥𝜖(⋃ 𝐸𝛼)𝛼
𝑐
    

      by the definition of complement. 

     Thus ⋂ (𝐸𝛼
𝑐

𝛼 )   ⊆ (⋃ 𝐸𝛼)𝛼
𝑐

 

     Hence,   (⋃ 𝐸𝛼)𝛼
𝑐

= ⋂ (𝐸𝛼
𝑐

𝛼 ). 

 

 

 

 

 

Theorem:   

a.   For any collection {𝐺𝛼} of open sets (this could be a finite collection or 

infinite, even uncountably infinite collection) ⋃ 𝐺𝛼𝛼  is open. 

b.   For any collection {𝐹𝛼} of closed sets ⋂ 𝐹𝛼𝛼  is closed. 

c.   For any finite collection of open sets {𝐺𝑖},  ⋂ 𝐺𝑖
𝑛
𝑖=1  is open. 

d.   For any finite collection of closed sets {𝐹𝑖},  ⋃ 𝐹𝑖
𝑛
𝑖=1   is closed. 

 

 

 

𝑥 

𝐸1
𝑐 

𝐸2
𝑐  

𝐸3
𝑐  
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Proof: 

a.   Let 𝐺 = ⋃ 𝐺𝛼𝛼 ,  where 𝐺𝛼 is open for all 𝛼.  To show 𝐺 is open we need to 

show that for any 𝑥𝜖𝐺 we can find a neighborhood of 𝑥 that lies completely in 𝐺. 

If 𝑥𝜖𝐺, then 𝑥 must lie in some open set 𝐺𝛼.  

Since 𝐺𝛼  is open, there exists some neighborhood 𝑁 of 𝑥 that lies entirely in 𝐺𝛼 . 

 

 

 

 

 

 

 

 

 

That neighborhood 𝑁 also lies in 𝐺 = ⋃ 𝐺𝛼𝛼 .  

Hence 𝐺 is open. 

 

b.    To prove for any collection {𝐹𝛼} of closed sets ⋂ 𝐹𝛼𝛼  is closed,  we note that 

the previous theorem stated that for a collection of sets {𝐸𝛼}, 

 (⋃ 𝐸𝛼)𝛼
𝑐

= ⋂ (𝐸𝛼
𝑐

𝛼 ). 

Now let 𝐸𝛼 = 𝐹𝛼
𝑐  and hence 𝐸𝛼

𝑐 = 𝐹𝛼.  

Now substituting into the above equation: 

                      (⋃ 𝐹𝛼
𝑐)𝛼

𝑐
= ⋂ (𝛼 𝐹𝛼). 

Since 𝐹𝛼  is closed for all 𝛼, 𝐹𝛼
𝑐 must be open for all 𝛼. 

𝑥 

𝑁 

𝐺𝛼  

𝐺𝑖  

𝐺𝑗  



12 
 

By part “a” of this theorem, ⋃ 𝐹𝛼
𝑐

𝛼  is also open. 

Since ⋃ 𝐹𝛼
𝑐

𝛼  is open,  (⋃ 𝐹𝛼
𝑐)𝛼

𝑐
 must be closed since it’s the complement of 

an open set. 

Thus, since (⋃ 𝐹𝛼
𝑐)𝛼

𝑐
= ⋂ (𝛼 𝐹𝛼),   ⋂ (𝛼 𝐹𝛼)  is also closed. 

 

c.    To show that for any finite collection of open sets {𝐺𝑖},  ⋂ 𝐺𝑖
𝑛
𝑖=1  is open, it 

helps to think about the argument for 2 open sets (it is often helpful when trying 

to prove most propositions involving 𝑛 “things” to see how the argument works 

when 𝑛 = 2). 

Suppose 𝐺1 and 𝐺2 are open sets.  Let’s show 𝐺1 ∩ 𝐺2 is open.   

If 𝐺1 ∩ 𝐺2 (or ⋂ 𝐺𝑖
𝑛
𝑖=1 ) is empty, then 𝐺1 ∩ 𝐺2 (or ⋂ 𝐺𝑖

𝑛
𝑖=1 ) is open. 

If  𝐺1 ∩ 𝐺2 is not empty, then let’s choose any point 𝑥𝜖𝐺1 ∩ 𝐺2 and show it’s an 

interior point (and hence 𝐺1 ∩ 𝐺2 is open). 

Since 𝑥𝜖𝐺1 ∩ 𝐺2,  𝑥𝜖𝐺1 and  𝑥𝜖𝐺2. 

 

Because 𝐺1 is open, we can find  

neighborhood around 𝑥𝜖𝐺1,  𝑁𝑟1
(𝑥),  

such that 𝑁𝑟1
(𝑥)⊆ 𝐺1. 

 

Because 𝐺2 is open, we can find 

 a neighborhood around 𝑥𝜖𝐺2,  𝑁𝑟2
(𝑥), 

 such that 𝑁𝑟2
(𝑥)⊆ 𝐺2. 

Now let 𝑟 = min( 𝑟1, 𝑟2).  We now have that 𝑁𝑟(𝑥) ⊆  𝐺1, and 𝑁𝑟(𝑥) ⊆  𝐺2. 

𝑥 𝐺1 

𝐺2 

𝑁𝑟1
(𝑥) 

𝑁𝑟2
(𝑥) 

𝐺1 ∩ 𝐺2 
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So 𝑁𝑟(𝑥) ⊆  𝐺1 ∩ 𝐺2.  This means that 𝑥 is an interior point for 𝐺1 ∩ 𝐺2, and 

hence 𝐺1 ∩ 𝐺2 is open.   

To prove that for any finite collection of open sets {𝐺𝑖},  ⋂ 𝐺𝑖
𝑛
𝑖=1  is open, we use 

the same argument but now 𝑟 = min( 𝑟1, 𝑟2, … , 𝑟𝑛).   

 

d.   To show that for any finite collection of closed sets {𝐹𝑖}, ⋃ 𝐹𝑖
𝑛
𝑖=1   is closed, 

we can use the fact that a set is closed if and only if its complement is open.  So 

let’s show that (⋃ 𝐹𝑖
𝑛
𝑖=1 )𝑐  is open. 

From an earlier theorem we know that (⋃ 𝐹𝑖
𝑛
𝑖=1 )𝑐 = ⋂ (𝐹𝑖

𝑐𝑛
𝑖=1 ) . 

Since each 𝐹𝑖  is close, we know that each 𝐹𝑖
𝑐  must be open. 

From part c we know that the finite intersection of open sets is open, thus 

⋂ (𝐹𝑖
𝑐𝑛

𝑖=1 ) is open. 

Since (⋃ 𝐹𝑖
𝑛
𝑖=1 )𝑐 = ⋂ (𝐹𝑖

𝑐𝑛
𝑖=1 ),  (⋃ 𝐹𝑖

𝑛
𝑖=1 )𝑐 is open. 

Now we know that means that ⋃ 𝐹𝑖
𝑛
𝑖=1  is closed. 

 

 

Ex.  We need finiteness in both c and d in the previous theorem. 

⋂ (−
1

𝑖
∞
𝑖=1 ,

1

𝑖
) = {0}  which is not open. 

⋃ [
1

𝑖
∞
𝑖=1 , 1] = (0,1]   which is not closed. 

 

 

Def.  Let 𝑋, 𝑑  be a metric space.  If 𝐸 ⊆ 𝑋, and if 𝐸′ denotes the set of all limit 

points of 𝐸 in 𝑋,  then the closure of 𝐸,  𝐸̅=𝐸 ∪ 𝐸′. 
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Theorem:  If 𝑋, 𝑑  is a metric space and 𝐸 ⊆ 𝑋, then 

a.   𝐸̅ is closed 

b.   𝐸 = 𝐸̅ if and only if 𝐸 is closed 

c.   𝐸̅ ⊆ 𝐹 for every closed set 𝐹 ⊆ 𝑋 such that 𝐸 ⊆ 𝐹. 

 

Proof:  

a.   To show 𝐸̅ is closed, we will show that (𝐸̅)𝑐  is open. 

      Let’s choose any point 𝑝𝜖𝑋 where 𝑝 ∉ 𝐸̅  (ie  𝑝𝜖(𝐸̅)𝑐).  We just need to show 

that 𝑝 is an interior point. 

Since 𝐸̅=𝐸 ∪ 𝐸′,  𝑝 is neither in 𝐸 nor a limit point of 𝐸.  Hence there is a 

neighborhood of 𝑝, 𝑁(𝑝),  that doesn’t intersect 𝐸.   

 

 

 

 

 

 

 

 

 

𝑁(𝑝) can’t intersect 𝐸′ either.  To see this, suppose there is a 𝑦 ∈ 𝐸′ ∩ 𝑁(𝑝), 

then there is a neighborhood around 𝑦, 𝑀(𝑦), that lies inside of 𝑁(𝑝)⊆𝐸𝑐 , 

since  𝑁(𝑝) is open. 

But  since y is a limit point of E, 𝑀(𝑦) must intersect 𝐸, which means that  

𝑁(𝑝)⊆𝐸𝑐  intersects 𝐸, which is a contradiction (𝐸 ∩ 𝐸𝑐 = ∅, by definition). 

𝑋 = 𝐸 ∪ 𝐸𝑐 

𝐸 

𝑝 
𝐸𝑐  

𝑁(𝑝) 

𝑦 𝑀(𝑦) 
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Thus that neighborhood 𝑁(𝑝) lies completely in (𝐸̅)𝑐  , hence  (𝐸̅)𝑐 is open and 

thus 𝐸̅ is closed. 

 

b.   First we show if 𝐸 = 𝐸̅ then 𝐸 is closed.  That’s follows from part a. 

      Now we show if 𝐸 is closed then 𝐸 = 𝐸̅.  

      If 𝐸 is closed then 𝐸 contains all of its limit points (by definition).  

      Hence 𝐸 = 𝐸 ∪ 𝐸′ =𝐸̅.   

 

c.    To show that 𝐸̅ ⊆ 𝐹 for every closed set 𝐹 ⊆ 𝑋 such that 𝐸 ⊆ 𝐹,        

       assume that  𝐹 is a closed set such that 𝐸 ⊆ 𝐹 ⊆ 𝑋. 

     Since 𝐹 is closed, it contains all of its limit points, 𝐹′.    

 

 

 

 

 

 

 

 

 

 

 

But since 𝐸 ⊆ 𝐹, any limit point of 𝐸 is also a limit point of 𝐹. 

     Hence 𝐹 contains all limit point of 𝐸, thus 𝐸̅ ⊆ 𝐹. 

𝑋 

𝐸 𝐹 

𝑥 ∈ 𝐹′ 


