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                                  Metric Spaces:  Definitions and Examples 

 

Def.  A set 𝑋, whose elements are called points, is said to be a Metric Space if for 

any two points 𝑝, 𝑞𝜖𝑋 there is a real number 𝑑(𝑝, 𝑞), called the distance, such 

that: 

a.       𝑑(𝑝, 𝑞) > 0 if 𝑝 ≠ 𝑞, and 𝑑(𝑝, 𝑝) = 0. 

b.       𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) 

c.       𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞)   for any 𝑟𝜖𝑋          (Triangle inequality) 

any function satisfying a,b,c is called a distance function or metric on 𝑋. 

 

Ex.  Let  𝑋 = ℝ,   𝑑(𝑝, 𝑞) = |𝑝 − 𝑞|  (the standard distance function on ℝ).  Show 

𝑋, 𝑑  is a metric space. 

 

To show 𝑋, 𝑑  is a metric space, we need to show that 𝑑 satisfies a,b,c above. 

a.    𝑑(𝑝, 𝑞) = |𝑝 − 𝑞| > 0  if 𝑝 ≠ 𝑞 (property of absolute values),  

       𝑑(𝑝, 𝑝) = |𝑝 − 𝑝| = 0 

 

b.    𝑑(𝑝, 𝑞) = |𝑝 − 𝑞| = |𝑞 − 𝑝| = 𝑑(𝑞, 𝑝) 

 

c.    We need to show 𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞)   for any 𝑟𝜖𝑋.  For this distance 

function it means we need to show: 

         |𝑝 − 𝑞| ≤ |𝑝 − 𝑟| + |𝑟 − 𝑞|                 

 Proof:    First we will show for all real numbers that  |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|  (This 

is called the triangle inequality for real numbers.  We will use it a lot.) 

            |𝑥 + 𝑦|2 = (𝑥 + 𝑦)2 = 𝑥2 + 2𝑥𝑦 + 𝑦2 = |𝑥|2 + 2𝑥𝑦 + |𝑦|2 
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             But for any real number, 𝑤,  𝑤 ≤ |𝑤|;   therefore: 

    |𝑥 + 𝑦|2 = |𝑥|2 + 2𝑥𝑦 + |𝑦|2 ≤ |𝑥|2 + 2|𝑥||𝑦| + |𝑦|2 = (|𝑥| + |𝑦|)2 

            Taking square roots we get:    |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|.  

 

      Now we let 𝑥 = 𝑝 − 𝑟  and   𝑦 = 𝑟 − 𝑞.   Notice that  𝑥 + 𝑦 = 𝑝 − 𝑞. 

                               |𝑝 − 𝑞| ≤ |𝑝 − 𝑟| + |𝑟 − 𝑞|     

Thus 𝑋 = ℝ,   𝑑(𝑝, 𝑞) = |𝑝 − 𝑞|  is a metric space.  

 

 

Ex.  Let 𝑋 = ℝ𝑛,  𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 = ‖𝑝 − 𝑞‖ ;   

 where 𝑝 = (𝑝1, … , 𝑝𝑛)  and   𝑞 = (𝑞1, … , 𝑞𝑛).  Show 𝑋, 𝑑 is a metric space.  

(𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2   is the standard metric on ℝ𝑛) . 

 

 We need to show that 𝑑(𝑝, 𝑞) satisfies a,b,c in the definition of a metric space. 

a.   𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 > 0;   if 𝑝 ≠ 𝑞; since the 

expression under the square root sign is strictly positive if 𝑝 ≠ 𝑞. 

      𝑑(𝑝, 𝑝) = √(𝑝1 − 𝑝1)2 + ⋯ + (𝑝𝑛 − 𝑝𝑛)2 = 0   

 

b.    𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 

                      = √(𝑞1 − 𝑝1)2 + ⋯ + (𝑞𝑛 − 𝑝𝑛)2 = 𝑑(𝑞, 𝑝) 

 

c.     We need to show 𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞)   for any 𝑟𝜖𝑋.   
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     Proof:  Once again we will start by showing ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖,  where 

𝑥, 𝑦𝜖ℝ𝑛 and  ‖𝑥‖ mean taking the length of the vector 𝑥 =< 𝑥1, … , 𝑥𝑛 >. 

 

‖𝑥 + 𝑦‖2 = (𝑥 + 𝑦) ∙ (𝑥 + 𝑦) = 𝑥 ∙ 𝑥 + 2𝑥 ∙ 𝑦 + 𝑦 ∙ 𝑦  

                  = ‖𝑥‖2 + 2𝑥 ∙ 𝑦 + ‖𝑦‖2  

 

Recall that:  𝑥 ∙ 𝑦 = ‖𝑥‖‖𝑦‖𝑐𝑜𝑠𝜃 ≤ ‖𝑥‖‖𝑦‖ ;     since |𝑐𝑜𝑠𝜃| ≤ 1.  

 

‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + 2𝑥 ∙ 𝑦 + ‖𝑦‖2 ≤ ‖𝑥‖2 + 2‖𝑥‖‖𝑦‖ + ‖𝑦‖2                                    

                   = (‖𝑥‖ + ‖𝑦‖)2   

 

Taking square roots we get:       ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.  

 

Now let 𝑥 = 𝑝 − 𝑟   and  𝑦 = 𝑟 − 𝑞   (again: 𝑥 + 𝑦 = 𝑝 − 𝑞) and substitute: 

‖𝑝 − 𝑞‖ ≤ ‖𝑝 − 𝑟‖ + ‖𝑟 − 𝑞‖ or  𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞) for any 𝑟𝜖𝑋.     

 

Thus 𝑋 = ℝ𝑛,  𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2, is a metric 

space. 

 

 

Notice that every subset 𝑬 ⊆ 𝑿, 𝒅 of a metric space is again a metric space with 

the same distance function. 

 

Ex.   𝑋 = {0, ±1, ±2, ±3, … } is a metric space with 𝑑(𝑝, 𝑞) = |𝑝 − 𝑞|   
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Ex. Let 𝑋 be a non-empty set and 𝑑 given by 𝑑(𝑝, 𝑞) = 1 if 𝑝 ≠ 𝑞, and 0 if 𝑝 = 𝑞. 

       Prove that 𝑋, 𝑑 is a metric space.  

 

a.   Notice 𝑑(𝑝, 𝑞) = 1 > 0 if 𝑝 ≠ 𝑞, and 𝑑(𝑝, 𝑝) = 0. 

 

b.    𝑑(𝑝, 𝑞) = 1 = 𝑑(𝑞, 𝑝) if 𝑝 ≠ 𝑞   

 

c.  By definition  𝑑(𝑝, 𝑞) ≤ 1.  Unless 𝑝 = 𝑞 = 𝑟,                                                       

                                              𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞) ≥ 1 ≥ 𝑑(𝑝, 𝑞). 

     If 𝑝 = 𝑞 = 𝑟, then 𝑑(𝑝, 𝑞) = 0 and 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞) = 0, hence: 

    𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞)   for any 𝑟𝜖𝑋.           

     So  𝑋, 𝑑  is a metric space. 

 

 

Ex.   Show ℝ, 𝑑  is a metric space where 𝑑(𝑝, 𝑞) = |𝑒𝑝 − 𝑒𝑞|. 

 

a.   𝑑(𝑝, 𝑞) = |𝑒𝑝 − 𝑒𝑞| > 0   for 𝑝 ≠ 𝑞  and 𝑑(𝑝, 𝑝) = |𝑒𝑝 − 𝑒𝑝| = 0.  

 

b.   𝑑(𝑝, 𝑞) = |𝑒𝑝 − 𝑒𝑞| = |𝑒𝑞 − 𝑒𝑝| = 𝑑(𝑞, 𝑝).  

 

c.    We need to show:   𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞)   for any 𝑟𝜖ℝ.   In this case: 

                              |𝑒𝑝 − 𝑒𝑞| ≤ |𝑒𝑝 − 𝑒𝑟| + |𝑒𝑟 − 𝑒𝑞|.      

       This looks daunting, but remember the Triangle inequality for real numbers:         

                                  |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| . 
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Now let 𝑥 = 𝑒𝑝 − 𝑒𝑟 and   𝑦 = 𝑒𝑟 − 𝑒𝑞,  so 𝑥 + 𝑦 = 𝑒𝑝 − 𝑒𝑞.  Hence: 

                              |𝑒𝑝 − 𝑒𝑞| ≤ |𝑒𝑝 − 𝑒𝑟| + |𝑒𝑟 − 𝑒𝑞|.       

Hence ℝ, 𝑑  is a metric space.   

 

Ex.  Let 𝑑(𝑝, 𝑞) = |𝑒𝑝 − 𝑒𝑞| be a metric on ℝ.  Find the set of points 𝑝 ∈ ℝ 

such that  𝑑(𝑝, 0) <
1

2
 . 

 

𝑑(𝑝, 0) = |𝑒𝑝 − 𝑒0| = |𝑒𝑝 − 1| <
1

2
 . 

This last inequality is equivalent to: 

                          −
1

2
< 𝑒𝑝 − 1 <

1

2
          Now add 1 to all quantities: 

                                
1

2
< 𝑒𝑝 <

3

2
 .            Now take natural logs of all quantities: 

                         ln (
1

2
) < 𝑝 < ln (

3

2
) . 

Thus the set of points 𝑝 ∈ ℝ such that 𝑑(𝑝, 0) <
1

2
 is:    ln (

1

2
) < 𝑝 < ln (

3

2
) . 

 

Ex.   Show ℝ, 𝑑 where 𝑑(𝑝, 𝑞) = | sin(𝑝 − 𝑞) |, is NOT a metric space. 

 

a.   𝑑(𝑝, 𝑞) = | sin(𝑝 − 𝑞) | ≥ 0, however,   𝑑(0, 𝜋) = |sin (0 − 𝜋)| = 0.  

So there exist a 𝑝 ≠ 𝑞 where 𝑑(𝑝, 𝑞) = 0, which violates 𝑑(𝑝, 𝑞) > 0, 𝑝 ≠ 𝑞.  

so ℝ, 𝑑 is not a metric space. 
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Note:  Not all metric spaces are subsets of ℝ𝑛. 

Ex.   𝑋 = 𝐶[0,1] =set of real valued, continuous functions on [0,1].  𝑋 is a 

        metric space with either of these 2 metrics (there are an infinite number of 

       metrics on 𝑋) 

        𝑑1(𝑓, 𝑔) = ∫ |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥
1

0
 

        𝑑2(𝑓, 𝑔) = max
𝑥∈[0,1]

|𝑓(𝑥) − 𝑔(𝑥)|. 

 

Ex.  Let 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝑥3.  Notice that 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐶[0,1].  Using 

       the 2 metrics just defined on 𝐶[0,1], find 𝑑1(𝑓, 𝑔) and 𝑑2(𝑓, 𝑔). 

 

𝑑1(𝑓, 𝑔) = ∫ |𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥
1

0
= ∫ |𝑥2 − 𝑥3|𝑑𝑥

1

0
 . 

Notice that when 0 ≤ 𝑥 ≤ 1,  𝑥2 ≥ 𝑥3  (when 0 < 𝑥 < 1 the higher the 

                                                                                  power the lower the value). 

Thus when 0 ≤ 𝑥 ≤ 1,  𝑥2 − 𝑥3 ≥ 0   hence   |𝑥2 − 𝑥3| = 𝑥2 − 𝑥3.  So 

𝑑1(𝑓, 𝑔) = ∫ |𝑥2 − 𝑥3|𝑑𝑥 = ∫ (𝑥2 − 𝑥3)𝑑𝑥
1

0

1

0
  

                 =
1

3
𝑥3 −

1

4
𝑥4|𝑥=0

𝑥=1 = (
1

3
−

1

4
) =

1

12
 . 

 

 

𝑑2(𝑓, 𝑔) = max
𝑥∈[0,1]

|𝑓(𝑥) − 𝑔(𝑥)| = max
𝑥∈[0,1]

|𝑥2 − 𝑥3|  

To find the maximum value of |ℎ(𝑥)|, we need to find where ℎ(𝑥) has its greatest 

positive value and its most negative value and choose the one which is greater in 

absolute value (e.g. if ℎ(𝑥) has 4 as its most positive value and -6 as its most 

negative value then the maximum of |ℎ(𝑥)| is |-6|=6.) 
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In this case we already saw that 𝑥2 − 𝑥3 ≥ 0 so we just have to find the 

absolute maximum value of ℎ(𝑥) = 𝑥2 − 𝑥3.   Using first year calculus, find the 

values of ℎ(𝑥) at all critical points in [0,1] and then test the values at the 

endpoints. 

                    ℎ′(𝑥) = 2𝑥 − 3𝑥2 = 𝑥(2 − 3𝑥) = 0  

                                             ⇒         𝑥 = 0 or  𝑥 =
2

3
 . 

ℎ(0) = 0 ,      ℎ (
2

3
) = (

2

3
)2 − (

2

3
)

3

=
4

9
−

8

27
=

4

27
  ,     ℎ(1) = 12 − 13 = 0. 

So the absolute maximum value of ℎ(𝑥) is 
4

27
  (absolute minimum is 0).  So 

𝑑2(𝑓, 𝑔) = max
𝑥∈[0,1]

|𝑓(𝑥) − 𝑔(𝑥)| = max
𝑥∈[0,1]

|𝑥2 − 𝑥3| =
4

27
 .  

 

 

 

Def.  Let 𝑋 be a metric space with distance function 𝑑. 

a.   A neighborhood of 𝒑, where 𝑝𝜖𝑋, is a set 𝑁𝑟(𝑝) of all points 𝑞 such that 

      𝑑(𝑝, 𝑞) < 𝑟 for some 𝑟 > 0. 

 

 

 

 

 

 

 

 

𝑝 

 𝑁𝑟(𝑝) 

) ( 

𝑝 
𝑁𝑟(𝑝) 

𝑟 

𝑋 
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b.   A point 𝑝 is a limit point of 𝐸 ⊆ 𝑋 if every neighborhood of 𝑝 contains a point 

𝑞 ≠ 𝑝 such that 𝑞𝜖𝐸.   

 

 

 

 

 

 

 

 

 

 

 

 

Ex.   Let 𝑋 = ℝ, and 𝑑 the standard metric (i.e.  𝑑(𝑝, 𝑞) = |𝑝 − 𝑞|).  Let 𝐸 = (0,1) 

That is 𝐸 = {𝑥𝜖ℝ| 0 < 𝑥 < 1}.  The set of limit points of 𝐸 = [0,1]. 

 

 

 

 

Ex.   Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = (0,1) ∪ {3} ∪ {−2}. 

       The set of limit points of 𝐸 = [0,1]. 

 

 

 

0 1 −2 3 

( ) ( ) ( ) ( ) 

𝑝 

𝐸 

𝑋 

( ) 

0 1 

) ( 
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c.   If 𝑝𝜖𝐸 and 𝑝 is not a limit point of 𝐸, then 𝑝 is called an isolated point of 𝐸  

 

Ex.  Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = (0,1) ∪ {3} ∪ {−2}. 

     {3}, {−2} are isolated points of 𝐸. 

 

d.   𝐸 is closed if every limit point of 𝐸 is a point of 𝐸.  

 

Ex.   Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = [0,1] ∪ {5} ∪ {−3}. 

        𝐸 is closed in 𝑋 = ℝ.  

 

        Let 𝐹 = (0,1] ∪ {5} ∪ {−3}.  𝐹 is not closed in 𝑋 = ℝ, since 𝑥 = 0 is a 

        limit point of 𝐹, but is not contained in 𝐹. 

 

e.   A point 𝑝 is an interior point of 𝐸 if there is some neighborhood 𝑁 of 𝑝, such 

       that 𝑁⊆ 𝐸. 

 

 

 

 

 

 

Ex.  Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = [0,1) ∪ {3}. 

0 < 𝑥 < 1 are interior points of 𝐸.  𝑥 = 0 and 𝑥 = 3 are not interior points of 𝐸. 

 

 

0 1 3 

( ) ( ) 

𝑝 

𝑁 

𝐸 
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f.   𝐸 is open if every point of 𝐸 is an interior point  

 

Ex.   Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = (0,1). 

       𝐸 is an open set in 𝑋 = ℝ. 

Note:  Let 𝑋 = ℝ2, and 𝑑 the standard metric.  Let 𝐹 = {(𝑥, 𝑦)| 0 < 𝑥 < 1, 𝑦 = 0} 

 Although 𝐹 is essentially the same set as  𝐸 in our example, 𝐹 is NOT an open 

subset of 𝑋 = ℝ2 because a neighborhood 

in ℝ2 is a disk. 

 

 

 

 

 

g.   The complement of E (denoted 𝐸𝑐), is the set of all point 𝑝𝜖𝑋 such that 𝑝 ∉ 𝐸. 

Ex.   Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = [0,1).   

       𝐸𝑐 = (−∞, 0) ∪ [1, ∞). 

  

h. 𝐸 is bounded if there is a real number 𝑀 and a point 𝑞𝜖𝑋 such that         

     𝑑(𝑝, 𝑞) < 𝑀 for all 𝑝𝜖𝐸. 

 

 

 

 

 

 

𝐹 

𝑞 

𝐸 

𝑀 

𝑋 
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Ex.   Let 𝑋 = ℝ, and 𝑑 the standard metric.  Let 𝐸 = [0,1) ∪ {−2}. 

        𝐸 is a bounded set.  We can take 0𝜖𝑋 and 𝑑(0, 𝑝) < 3, for all 𝑝𝜖𝐸. 

 

 

 

 

i.   𝐸 is dense in 𝑋 if every point in 𝑋 is a limit point of 𝐸, or a point of 𝐸 (or both).  

 

Ex.   𝐸 = ⋃ (𝑖, 𝑖 + 1)𝑖=∞
𝑖=−∞ ,   𝐸 is dense in 𝑋 = ℝ, and 𝑑 the standard metric.   

Ex.   𝐸 = {𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠};  𝐸 is dense in 𝑋 = ℝ, and 𝑑 the standard metric.   

 

Ex.   Consider the following subsets of the metric space 𝑋 = ℝ, with 𝑑 the 

standard metric.   

𝐴 = {0,1,2,3, … },                 𝐵 = {0,1,2},                                   𝐶 = {𝑥|  |𝑥| ≤ 2},         

𝐷 = {𝑥| − 1 < 𝑥 ≤ 1},      𝐸 = {𝑥| 𝑥 ≥ 0  𝑜𝑟  𝑥 = −2},      𝐹 = {1,
1

2
,

1

3
,

1

4
, … }  

 

 Then we have the following table: 

 

           Limit Points         Isolated Points          Bounded         Closed         Open 

A               ∅                       {0,1,2, … }                     N                      Y                N 

B               ∅                       {0,1,2}                           Y                      Y                 N 

C            [−2,2]                      ∅                               Y                       Y                 N 

D            [−1,1]                      ∅                               Y                      N                 N 

E             [0, ∞)                     {−2}                          N                      Y                 N 

F               {0}                    {1,
1

2
,

1

3
,

1

4
, … }                Y                      N                 N 

0 1 −2 3 −3 

( ) 



12 
 

Ex.   Consider the following subsets of the metric space 𝑋 = ℝ2 with 𝑑 the 

standard metric.   

𝐴 = {(𝑥, 𝑦)|  𝑥2 + 𝑦2 > 1},     

 

 

 

 

𝐵 = {(𝑥, 𝑦)|  𝑥2 + 𝑦2 ≥ 1},     

 

 

 

 

 

𝐶 = {(𝑥, 𝑦)|  |𝑥| < 1, |𝑦| > 1}  ∪ {(0,0)}  

 

 

 

 

 

 

 

           Limit Points         Isolated Points          Bounded         Closed         Open 

A         𝑥2 + 𝑦2 ≥ 1                ∅                              N                     N                  Y 

B         𝑥2 + 𝑦2 ≥ 1                ∅                              N                     Y                   N 

C     |𝑥| ≤ 1 and |𝑦| ≥ 1    {(0,0)}                       N                     N                  N 

𝑥2 + 𝑦2 > 1 

𝑥2 + 𝑦2 ≥ 1 

𝑦 = 1 

𝑦 = −1 

𝑥 = 1 𝑥 = −1 


