Uniform Convergence

Def. Suppose {f;;(x)} is a sequence of functions f,;: I € R = R, where I is an

interval (bounded or unbounded, open, closed, or neither) in R. We say {f,,(x)}

converges pointwise to f(x), and write lim f,,(x) = f(x), if foreach x € I,
n—-oo

the sequence of real numbers {f;,, (x)} converges to f (x).

That is, for all € > 0 there exists an N, € Z* such thatif n = N,, then

Ifn(x) = flO| <e
Ex. Let f;,(x) = x™, onI =[0,1]. Prove that:
lim f,,(x) = f(x) =0 if 0<x<1
n—-o0o
=1 if x=1.
n
For example, if x = %, the sequence {fn(%)} = {G) } > 0asn - oo

However, if x = 1, the sequence {f;,(1)} = {(1)"} = 1 asn - .




We must show given any € > 0 there exists an N,, € Z7F, such thatifn > N,
then [x™ — f(x)]| < €.

If x =1, then |1™ — 1| = 0 < € for any n, so we can choose N,, = 1.
If x =0, then |0™ — 0] = 0 < € for any n, so we again can choose N, = 1.
f0<x <1,then: [x"—0|<e€
|x|" < €
(n)In|x| < lne

Ine

n>

(since In|x| < 0 because 0 < x < 1)
In|x|

l
So choose N, > max(ﬁ, 0);

If n = N, then:

lne lne

Ix™ — 0] = |x|* < |x|nid = (elnlx))nixl = glne — ¢

Notice that each f,,(x) in this example is a continuous function (in fact, an
infinitely differentiable function), but the sequence of functions converges
pointwise to a discontinuous function.

To try to avoid having a sequence of continuous functions converging to a
discontinuous function, we need a “stronger” definition of “convergence”.



Def. A sequence of functions {f;;(x)}, fn: I € R = R, where I is an interval
(bounded or unbounded, open, closed, or neither) in R, converges uniformly to

f(x) if forall e > 0 there existsan N € Z* , such thatforALLx € I, ifn = N

then |f,(x) — f(x)| < e.

1. Notice that for Pointwise convergence the N can depend on the point
x € I as well as €. For Uniform convergence the N depends only on € and

NOT the point x € I.

2. Uniform convergence is a stronger condition than pointwise convergence.
Thus if a sequence of functions converges uniformly to a function f(x),
then it must converge pointwise to f(x). However, if a sequence of
functions converges pointwise to f(x) then it may, or may not, converge
uniformly to f(x).

Ex. Show the sequence of functions {xn} converges pointwise to the function:
fx)=0if0<x<1
=1 if x=1

on [ = [0,1], but not uniformly.

In the previous example we saw that {x"} converges pointwise to f(x). To see
that any N we use must depend on the x € [0,1], notice thatif 0 < x < 1 and we

try to solve for an n from the epsilon statement we get:
Ine

|x™ — 0] < € isequivalenttonn >
In|x|

Ilne
In|x|

Thusif € < 1,asx goesto1, goes to 0, thus there is no N that will work

foral0 <x<1.



1
Another way to see this is if we choose € = oy given any positive integer n, we

1
can always find an x, where 0 < x < 1and |[x" — 0| = p
n 1. : 1= . 1.1
|x™| = 5 isequivalentto x = (E)n (notice that 0 < (E)n <1)

1 1.1 1
Thus for any positive integer n, x = (%)n ,has |x™ — 0] = |((5)n)"| = >

Notice that if | = [O,g], {x™} would converge uniformly to f (x) = 0.

) ) Ine Ilne 7
In this case we would just note that: < — forall x € [0,].
In|x| In|| 8

So we could choose N > max( 7 ,0) which does not depend on x.

Nig

sin(n?x)

Ex. Show that the sequence of functions f,,(x) = converges

uniformly to f(x) = 0 for I = R. However, show that f;,"(x) does not
converge even pointwise to ' (x).

,fl (x) = sinx —
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2
sin(n©x
To show that the sequence of functions f,, (x) = % converges uniformly

to f(x) = 0forI = R, we must show:
for all € > 0 there exists an N € Z* such thatforall x € R, ifn > N then

sin(n2x)

—O‘<e.

As usual, we start with the epsilon statement:

sin(nx)
n

o] = e

n

1 .
< —  since | sin(b) | < 1, forallb € R.

sin(nx)

1 1
So if we can force ; < € we’re almost done, because — 0‘ < -

1 1
But - < € isequivalentto n > .

1
So choose N > < (notice that N depends only on € and not x € R).

fn=>N >%wehave:

sin(n?x)
—= = €.

1
<-<
n n

sin(n?x

1
n 1
€

sin(n?x)

Thus f,, (x) = converges uniformly to f(x) = 0 for I = R.

(x) = n2cos(nx)

Now notice that f;, = ncos(n?x), and f'(x) = 0.

However, for no value of x is lim f, (x) = 0, in fact the lim f,, (x) does not exist
n—oo n—»oo

(at least it’s not a finite number). For example, when x = 0,

lim f,,(x) = lim n = .
n—>0o n—>0o



Theorem: If f,,(x) converges to f(x) uniformly on aninterval I € R, and f,,(x) is
continuous on [ for all n, then f(x) is continuous on I.

Proof: we must show that given any point a € I, that for every € > 0 there exists
a6 > 0suchthatif |[x —a| <6, x €1, then |f(x) — f(a)| < € (here the § can
depend on the point “a”).

Let’s start by choosing any point a € I, and fixing any € > 0.

By the triangle inequality we know:

If () = f(@)] < If (%) = /(] + | fu(x) = f(@)].

Using the triangle inequality again, but on the 2" term on the RHS we get:

/() = f(@] < 1/ (x) = fu(@)] + [fn(@) = f(a)].

Putting these 2 triangle inequalities together we get:

If () = f@| = 1f(x) = O] + |fu(x) — fu(@)] + |fn(a) — f(a)].

€
Now let’s show that each one of the terms on the RHS can be made less than 3

Since f,, (x) converges to f (x) uniformly we know there existsa N € Z* such
thatifn > N then |f,,(x) — f(x)] < gfor everyx € I.

€
Thus the first and the third terms on the RHS can be made less than g by choosing

anyn = N, using N in the statement above.



€
Since f;, (x) is continuous on I we know that given any 3 0 there exists a

& > Osuchthatif |[x —a| < 8, x €I, then |f,,(x) — f,(a)| < g

Using this & we have:

If () = f@] < If () = fu(Ol + 1/ (x) = fu(@] + [ fu(@) = f(2)]

€ € €
< 3 + 3 + 3= €.
Thus f(x) is continuous on I.

Def. Let C(I) = {bounded continuous functions f: I € R - R}

Note: If I is closed and bounded then it is compact and thus any continuous
function on I will automatically be bounded.

C(I) is a metric space with the distance defined as:

d(f(x),g(x)) = Sup |f(x) — g(x)|

x€el
1 d(f(x),g(x)) = Sup £ (x) = g(x)| 2 0; and d(f(x),g(x)) =0

implies f(x) = g(x).
2. d(f(x),g(x) = d(g(x), f(x))
3. d(f (), 9(0) < d(FG0),h() + d(h(x), g(x))
This is true because if A(x) = B(x) + E(x) then by the triangle inequality:
|A(x)| < |B(x)| + |E(x)| forany x € I.
Thus we have:  Sup|A(x)| < Sup|B(x)| + Sup|E(x)].

x€l X€El x€el

Now let A(x) = f(x) — g(x), B(x) =f(x) —h(x), E(x)=h(x)—gXx).
This gives us d(f(x),g(x)) < d(f(x), h(x)) + d(h(x),g(x)).



Notice that a sequence of functions f,,(x) € C(I) converges to f (x) with this
metric if given any € > 0 there existsa N € Z* such thatif n = N then

d(fu(), f(x)) = Suplfu(x) — f(D)| <e.

X€l

This € statement is equivalent to saying that |f;,(x) — f(x)| < e forallx € I.
Thus convergence in C (1) is the same as uniform convergence.

We already know that if f;, (x) converges uniformly to f (x) and all of the f,, (x)
are continuous then so is f (). In a moment we’ll see that if all of the f,,(x) are
also bounded, then sois f(x). Thus any sequence in C(I) that “converges” with

the above metric, converges to a function in C(I). Thus C(I) is a complete
metric space.

Theorem: f;,(x) converges uniformly to f (x) on I if and only if foralle > 0
there existsan N € Z%, such thatforallx € I, ifn,m = N then

|fn(x) — frn(@)]| < €.

(i.e., if {f,(x)} € C(I), then {f;,(x)} converges to f(x) € C(I), if and only if
{fn(x) }is a Cauchy sequence in C(I)).

Proof: Assume that f,, (x) converges uniformly to f(x) on I.

By the triangle inequality we have:

/() = frn )| < 1fu(x) = FO)| + |f (x) = frn (0.

Since f;,(x) converges uniformly to f (x) on I, there exists N € Z* such that if
n = N then |f,(x) — f(x)| < gforanyx €l

And, of course, if m > N then | f,,,(x) — f(x)]| < g forany x € I.



Thus if m,n = N then we have:

() = fin G| < 1 (0) = FO + 1f () = frn ()| < S+ > =€

foranyx € 1.

Now assume for all € > 0 there exists an N € Z*, such that for all x € I,

ifn,m > N then |f,,(x) — f,n(x)| < € and show that f;,(x) converges
uniformly to f(x) on I.

Foreach x € I, {f;,(x)} is a Cauchy sequence of real numbers and thus
converges to a real number f(x). So lim f,(x) = f(x) (thisis a pointwise
n—-o0o

limit).

Now we must show that f,, (x) converges uniformly to f(x).

By assumption, there exists an N € Z*, such thatforallx € I, ifn,m > N

then |f(x) — frn(x)| < e.

This is true forallm = N, so let m go to co. Thus we have:

there existsan N € Z*, such thatforallx €I, ifn > N

then |f,(x) — f(x)| <e.

Hence f,(x) converges to f(x) uniformly.
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Now we can see why a set of bounded uniformly convergent continuous
functions must converge to a bounded continuous function. Suppose

|/ (x)| < M,, forall x € I and each n. How do we know that as n goes to
infinity, M,, doesn’t go to infinity?

By the previous theorem we know that any Cauchy sequence in C (1), {f;,(x)},
converges to uniformly to some f (x) on I (which must be continuous since all of
the f!s are). Thus we have for all € > 0 there existsan N € Z*, such that for all
x €1, if n = Nthen|f(x) — f,,(x)]| <e.

In particular, |f(x) — fy(x)| < € forallx € I. Thus we have:
—€ < f(x) — fu(x) <e€
fnx) —e<f(x) < fy(x) +e
My —e< fy(x)—e<f(x) <fy(x)+e<My+e

Thus |f(x)| < My + € and f(x) is bounded.

Hence any Cauchy sequence in C (1) must converge to a bounded continuous

function, f (x), thus f(x) € C(I) and C(I) is complete.



