Taylor Series

Starting with a function f (x) which has infinitely many derivatives we can form a
Taylor Polynomial of degree n about a point x = a.

T,00 = f(@) + f' (@ - a) + =2 (x - a)?

L@ a4+ LY —g)n

3! n!

+

Ti(x) = f(a) + f'(a)(x — a) isalinear approximation of f(x).

; Here we have: T;(a) = f(a)

y=fC) /| T'(a) = f'(a)

= = f(@) + f (@) — @)

T, = (@) + f/(@)x — @) + L2

2
f.
[Here we have: T,(a) = f(a)
| 1,'(@) = f'(a)
y= o T,"(a) = f"(a)

2!

(x — a)? is a quadratic approximation of

| -,'E‘Tz'('xr)' = f(@ + f'(@)(x — a) + 2 (x — a)?



T,, (x) is an approximation of the function f (x) which has:

To(a) = f(@), T'(@ =f'(a), T,"(@) = f"(@), .., ," (@) = f™(a).
The question is, how “good” an approximation is Ty, (x) of f(x) when x # a?

Can we put some kind of bound on how large the error is?

Theorem (Taylor’s Formula); If f hasn + 1 derivatives in an interval I that

a_n

contains “a@” , then for xel there is a number ¢, where c is strictly between x and
a, such that

f@O=f@+f@&-a)+E2@-a? + ED @ —a)® + -

+f—m)(x —a)" + R, (x,a).

n!

f(n+1)(C) _ n+il
(n+1)! (x —a) '

y = f(x)
) /
74 BRILIC)

where the error after the nth degree term, R, (x,a) =

Ry(x, ¢
o




Note 1: “c” depends on x and a.

Note 2: Whenn = 0 we have:

fFO=f@+f(©)x—-—a) o LELD_ prpy,

xX—a

with ¢ between x and a, which is just the Mean Value Theorem.

Note 3: Taylor’s formula is important because it allows us to explicitly estimate
how big the error is.

Proof: We will create a function that satisfies the Mean Value Theorem and the

. f(n+1)(c) n+1 .
expression R, (x,a) = e (x — a)™"*, will follow from the M.V.T.

Let’s start by fixing x and a, i.e. x and a are now constants where x #+ a.
We define a function g(t) by:

9O = f) ~ O+ OG- +EL @ — )2 + -

(x—t)n+1
(x_a)n+1]

+582 = 0" + Ry, a)

Notice that:

90 = F() = [f@) + F ) —2) + 22 (e — )2 4 +

2!
n N+l
fn(!x) (x—x)"+R,(x,a) %] =0
g@)=fx)-[fa+f(a)x—a)+ ! 2(!a) (x—a)’+--+
fM (@) (x—a)"+1
—=(x —a)" + Ry (x, ) W]

=fx) = f(x) = 0.



g(t) satisfies the Mean Value Theorem on an interval containing x and a.

So by the Mean Value Theorem, there exists a ¢ between a and x such that:

gx)—g(a) — 0= g,(C)

g =—-[f'O-fO+f"®Ox-1t)

1
+ 57| (20 = Of (@) + (x — t)2f" ()] + -

(n+1) __A\n
SO ot DR @) D

Which simplifies to:

PR Al (O I (x—t)"
g0 = -T2 - 0 4 (4 DRy G 0) 0
Since g'(c) = 0 we have:

PN Ll (2 I (x—c)™
0=9'(c) = — x—c)"+(n+ 1R, (x,a) ey

Solving for R,,(x, a) we get:

fY0 o n (x=o)™
—~ x—c)*"=m+ 1R, (x,a) ey
f@ (x—)"
(n+1)! (x —c)" = Ru(x,a) (x—a)™*+1
fM ()

— A+l — ) .
et )] (x —a) R, (x,a); wherecisbetween x and a.



Ex. Compute the Talylor polynomial T3 (x) around a = 0 for f(x) = sinx and

use it to estimate Sinn(0.1). Find a bound for the error in this estimate.

T3() = £(0) + £/ () + 2 (02 + 52 (2

f(x) = sinx f(0) =sin0 =0
f'(x) = cosx £'(0) = cos0 =1
f"(x) = —sinx £"(0) = —sin0 =0
f""(x) = —cosx £"(0) = cos0 = —1

f*(x) = sinx

3

Tg(x)=x—%.

f@) ~ T30 =x -5

(0. 1)3

£(0.1) ~ 0.1 — ~ 0.099833

FGO = sinx = £(0) + £'(0)@) + 52 )2 + L2 (0% + Ry (x,0);

R;(x,0) = f(4()c') (x)* S(Z;'c (x)* ; where c is between 0 and x.

. sinc 4 i 4 .
R3(0.1,0)| = |75, (0.1)*] < 7 (0.1)* ~ 0.000004.



This means that :

0.099833 — 0.000004 < sin(0.1) < 0.099833 + 0.000004 or
0.099829 < sin(0.1) < 0.099837 .

Ex. Approximate [11(1.2) so that the error is less than 0.001.

Find the Taylor series with error term for f(x) = Inx around the point a = 1.

f(x) = Inx f(H)=mn1=0

@) =1 fr=1=1

10 =5 e —@= -1

) =2 [ =gs=

fO@) = (DR o) = (- ED = (i -

T,00 = fD) + D -D+EL - 12 + 2B —1y3 4+
A LD -1,

(n+1)
Rl 1) = Lm0 gyt = (a2 O (L2 0) (- 1yt

(n+1)! ct1 \(n+1)!

_ n+2 - Hrt
( ) (n+1)cnt+1”’

1)!



(x_l)n+1

(n+1)cnt1

IR, (x,1)| = | | where c is between 1 and x.

Now x = 1.2 so:

12-p)"1  (0.2)"*?
(m+D)c™ 1 T (n+1)cn+l

IR, (1.2,1)] =

Since C is between 1 and 1.2:

(0_2)n+1 )
IR,(1.2,1)]| < vy and we want this to be less than 0.001.
n+1
So we must solve for n: 0-2) < 0.001.
(n+1)

There’s no elementary way to do this, but we can just use trial and error. Just try
n =1,2,3,...until we find an n that works. n = 3 will do the trick.

Thus we can say:

In(1.2) = f(1) + f' (D12 - 1) + f"z!” (1.2 - 12+ %(1.2 —1)3

with an error less than 0.001.

In(1.2) ~ 0+ (1.2 — 1) — > (1 — 1.2)2 +§(1 —1.2)% ~ 0.1827

with an error less than 0.001.

So we know that :

0.1827 — 0.001 < In(1.2) < 0.1827 + 0.001
0.1817 < In(1.2) < 0.1837 .



Ex. Find the negative values for x where f(x) = e* can be approximated by
3

2
1+x+ x? + % with an error less than 0.001.

3

2
T3(x)=1+x+x?+x? around a = 0.

(4)
R;(x,0) = f(4)(|c)( x)* = —x we want to know the x’s such that x < 0

and |R3(x,0)| < 0.001.

Sincex < 0 and a = 0, ¢, which is between x and a, is also less than 0. Thus
et < 1.

|R3(x,0)| = |— | < |—| < 0.001; Now let’s solve x* < 0.024

|x| < V/0.024 ~ 0.3936
So —0.3936 < x < 0.

Suppose f (x) has infinitely many derivatives for xeR. When is

f(x) =Xn- ! n(a) (x —a)™ ? Thatis, when does the Taylor Series of a

function converge to the values of the function?




Theorem: If lim R, (x,a) = Ofor |[x —a| < M, then

fx) =y f (a) (x — a)™ forall x such that |x — a| < M.

Proof: f(x) =T,(x) + R,(x,a)

_ ) f"'(a) 3
@) = ~a2+ @ )t
+fT(f)(x —a)" + R, (x,a).

11m f(x) = 11m [Z" I _(a)( —a)' + R,(x,a)]

i!

n!

flx) =Y f (@) (x —a)™; since lim R,,(x,a) = 0.
n—>0o

Ex. Prove that the Taylor Series around a = 0 for f (x) = e* converges to
f(x) = e* forall xeR.

f=ex  fO)=e=
f@=e*  fO=1
frleo=ex  frO0)=1
FOG) =e*  fO0) =1



10

3 n

x? x x
Tn(x)=1+x+5+;+---+z

— f+0 () n+1| e’ n+1iy.

where c is between 0 and x.

We need to show that llm | (x)"+1| = 0 for any x€R.

1)'

n+1
Thus we just have to show for any fixed number x, lim 1] = 0, sincee®

n—-oo (n+1)!
is just a constant once x is fixed.

Fix X and let p = [|x]|] =the greatest integer less than or equal to |x|.

Notice that:

() (). () (1) . () (22 Gt vy <1

We now just need to show that lim ( )n P = 0 since
n—oo (P 1)

|x|™ |x|P x| \n-p
0= n! = ( p! )((p+1)) '

Thus by the squeeze theorem if lim (le )( d )P = 0 then
n—oo (p+1)

n
lim (17 _ 0.
n-ooo (n)!

P
Since 1 <1,and Ll is a constant, if we can just show that lim a™ = 0 if
(r+1) p! n—oo

|a| < 1, we will be done.



We must show given any € > 0 we can find N > 0 such that if n = N then

la™ — 0| < €.

x| < €

n(ln |a]) < In(€)

1
n > n(e) since In |a| < 0.
In|a|
In(e
If e > 1 then ln|(a)| < 0 solet’schoose N > max(0

Now let’s show this N works.

1
fn=>N > max(O,@) then
In|a|
|an — Ol = |a|n < |a|1n|0(| — (eln|a|)1n|a|

= elnlel = ¢,

n+1
so lim 2" — 0 and lim R, (x, 0) = 0.

n—oo (n+1)! n—oo

X w X
So f(x)=e =Zn=OE'

In(e)
"In|a|

).

11
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Ex. Prove that the Taylor Series for f (x) = sinx around a = 0 converges to
f(x) = sinx for all xeR.

f(x) = sinx f(0) =sin0=0
f'(x) = cosx f(0) =cos0 =1
f"(x) = —sinx f"(0)=—-sin0=0

f®(x) = —cosx £3(0) = —cos0 = —1

f®(x) = sinx F®(0) = sin0 = 0.
B x3 x5 (_1)nx2n+1
T2n+1(x) =X —a +§+W

(2n+2)
©
Rynt+1(x,0) = JC(ZHT), (x)2n+2,

We must show that lim R,,,.1(x,0) = 0, forall xeR.
n—oo

_ @ yy2n42
|Ryn+1(x,0)| = m(x) e,

Notice that all of the derivatives of f (x) = sinx are +sinx or +cosx. Inany

of those cases we know that |f(n) (x)| < 1, forall x. Thus we know:

e o an2 x2n+2 .
S A ) < .
|Ron+1(x,0)| = | Znt2)! (x) | < | i) | . But notice that:
0 < |Rypt1(x,0)| < | | and we just saw that lim = 0.

(2n+2)!

n—oo (n)!

So by the squeeze theorem lim R,, . (x,0) = 0, forall xeR.
n—>0co

Thus the Taylor Series for f(x) = sinx converges to f(x) = sinx for all xeR.



Ex. Let f(x) =1In (1 —x).

a. Find T3(x) around a=0.

b. Approximate [n(1.2) using T5(x) around a = 0.

c. Find an upper bound for the error in the approximation in part b.

xn
d. Prove the Taylor series for In (1 — x), — X774 —, converges to

In(1—x)for—1<x<0.

a. Ts(x)=f(0)+ f'(0)(x)+ %(x)2 + %(xf (around a = 0)

f(x) =In(1 —x) f(0O)=mn1=0
! 1 !/
frf) =—— f1(0)=-1
144 1 144
fre = - f7(0) = -1
124 2 124
[0 =~ 5 f'(0) = -2
So we have:
2 3 2 3
T3(x)=0—x—x7—x? —x—x?—x?.
b. In(1—x) = _x_x;_x;; soatx = —0.2 we have:

In(1.2) = —(—0.2) —

(027 _ (<027  4.1827.

2 3

13



c. The remainder, or error term, for T,,(x) around a = 0 is:

AR

( D (x)™1 . Inthis case, n = 3.

R,(x,0) =

4)(0) 4, .
———=(x)*;  where c is between x and O.

Ra(x,0) =~

Thus the errorat x = —0.2 is:

R5(—0.2,0) = (4)(f)( 0.2)%  where —0.2 < ¢ < 0.

P so f@(0) = ——2

(4) —
[ (1-x)* (1-o)*

(— ° 2)(—0.2)*  where —0.2<c¢ <0

R3(=0.2,0) = (4)' (1—-¢)

0.2)*

Ra(=020)| = |55 (=

Sincec <0, 1—c>1; sowe can say:

4 4
02 Q27 _ 40004,

6
) (—0.2)*| = di-gi) ~02<c<0

14



d. To prove the Taylor series converges to the function forall =1 < x < 0 we
must show that lim R, (x,0) = 0 forall—1 < x < 0.

n—->oo

(n+1)
R,(x,0) = [ (x)™*1; where c is between x and O.

(n+1)!
FOD(x) = —#;n“; therefore:  f™*V(¢) = —#.
Thus we have:
Rn(%,0) = == (=5 (0™ = == () (O™

Notice that we can rewrite this as:

n+1

-1
Rn(x,0) = (n+1) (1i—c ’

1 X n+1
O S |Rn(x: O)l = (n+1) |(1—C)| :

Zl<1.

1-c

Since —1<x<0and1l—-c¢c>1; wehave|

X .
If welet @ = |:| < 1, weknowthat lim a™ = 0.

n—>00

Thus by the squeeze theorem we can conclude that lim |R,,(x,0)| = 0 and
n—o0o

thus lim R,,(x,0) = O forall —1 < x < 0.
n—-oo

15
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1
Ex. Let f(x) = e G2 forx > 0
=0 forx <0

Show that the Taylor Series for f(x) around a = 0 does not converge to f (x)
for x > 0.

As we noted in the last example in the section on Differentiation, for this function

f(0)=f"(0) == f™(0) = 0. Thus the Taylor series around a = 0 is:
/ 1 144 1
f) =0+ f'(0)x +f"(0)x* + —f(0)x™ + -
= 0.
-G2)
Clearly, f(x) =e 2 forx > 0
=0 forx <0

Is not equal to O for x > 0. So the Taylor series does not converge to the

function for x > 0 even though the function has an infinite number of
derivatives.



