Taylor Series- HW Problems

- 1. Use the Taylor polynomial $T_4(x)$ around a=0 to approximate cos(0.1). How large could the error be?
- 2. Approximate $e^{-0.1}$ to within an error of 0.00001.
- 3. Find the values of x where $T_4(x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4}$; x > 0, has an error of less than 0.01 for the function $f(x) = \ln(1+x)$.
- 4. Prove that the Taylor series around $a = \frac{\pi}{2}$ for $f(x) = \cos x$ converges to f(x) for all $x \in \mathbb{R}$.
- 5. Prove that the Taylor series around a=0 for $f(x)=e^{-2x}$ converges to f(x) for all $x \in \mathbb{R}$.

6. Let $f(x) = \ln(1+x)$. Below are some derivatives of f(x) which you can use to answer parts a-d.

$$f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f'''(x) = \frac{2}{(1+x)^3}$$

$$f''''(x) = -\frac{6}{(1+x)^4}$$

$$f^{(n+1)}(x) = \frac{(-1)^n (n!)}{(1+x)^{n+1}}$$

- a. Find the 3rd Taylor polynomial, $T_3(x)$, around a=0 for f(x).
- b. Approximate ln(1.1) using $T_3(x)$, around a=0.
- c. Find a bound for the error in this approximation.
- d. Prove that the Taylor series for f(x), which is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x)^n}{n}$ (you don't need to find this formula), converges to $\ln(1+x)$ for all 0 < x < 1.