The Mean Value Theorem

Def. Let f be a real valued function defined on a metric space X. We say that f
has a local maximum at a point peX if there exists a § > 0 such that

f(q) < f(p) forall geX with dx (p,q) < 6.

We say that f has a local minimum at a point peX if there exists a § > 0 such

that f(p) < f(q) forall geX withdyx(p,q) < &.

y = f(x)
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Theorem: Let f:[a,b] = R. If f has a local maximum or minimum at a point

pe(a,b), and if f'(p) exists, then f'(p) = 0.

Proof: Suppose f'(p) exists and f(p) is a local maximum.
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Then by the definition of a local maximum, there exists a & > 0 such that

f(x) < f(p) for all xe[a, b] with |x — p| < 4.



lx —p| <6
—-0<x—p<é

p—06<x<p+6.

Suppose that we take a pointt, p — § < t < p, then we have:

f@)—f(p) <0 since f(x) < f(p) for all xe[a, b] with |x — p| < & and

t—p<0 sincet <p;

So we have:
1O-/®) > 0; fort < p. Thuswe can say: lim 1O/ @) > 0.
t—p t-op~ t—-p

Now suppose we take a point, p <t <p + 6.

So we have:

f&)—f(p) <0 since f(x) < f(p) forall xeX with |x —p| < &

t—p>0 sincep < t;

So we have:
1O-7®) < 0; fort > p. Thatgivesus: lim [O-1@) < 0.
t—p top*  t-p

Since f'(p) exists we must have:

top- t-p topt t-p



Thus f'(p) = limw =0
top t-Dp

A similar argument works when p is a local minimum.

The next theorem will be used later to prove L'Hopital’s rule.

Theorem (Generalized Mean Value Theorem): If f, g: [a,b] = R, are

continuous on [a, b] and differentiable on (a, b), then there exists a point

ce(a, b) at which:

[f(b) = f(@)]g'(c) = [g(b) — g(@)]f' ().

Note: we could also write this result as:

f)-f(@) _ f'(c)
gb)-g(a) g'(c)

f(b)—f(a)

; This in turn could be written as:

b—a _ f'(©) _
IB)-9@ ~ g'(c) ¢
b—a

the average rate of change of f over [a,b] _ Inst. rate of change of f atc

the average rate of change of g over [a,b] "~ Inst. rate of change of g atc’

Proof: Let h(x) be defined by:

h(x) = [f(b) — f(a)]g(x) — [g(b) — g(a)]f (x);

h(x) is continuous on [a, b] and differentiable on (a, b) because f(x) and g(x)

are.

a<x<bh.



Notice that h(a) = h(b):

h(a) = [f(b) = f(@)lg(a) — [g(b) — g(D)]f ()
= f(b)g(a) — gb)f (a)

h(b) = [f(b) = f(@]g(b) — [g(b) — g(a)]f ()
=—g)f(a) + f(b)g(a).

If we can find a point ce(a, b) where h'(¢) = 0 then we would have:
0="h'(c) =1f(b) — fla)lg'(c) = [g(b) —g(@]f'(c) or
[f(b) — f(a)]lg'(c) =[g(b) — g(a)]lf'(c) (whichis what we are proving).

So let’s show we can find a point ce(a, b) where h'(c) = 0.
If h(x) is a constant function then h'(x) = 0 for all xe(a, b).

If h(x) is not a constant function then there is some point p, a < p < b where
either h(p) > h(a) or h(p) < h(a).

If h(p) > h(a), let ¢ be a point where h attains its global maximum (we know
a continuous function on a compact set attains its absolute maximum and

minimum values), @ < ¢ < b. This global maximum is also a local maximum
because it’s an interior point. Thus we know from the previous theorem that

since h(x) is differentiable, that h'(c¢) = 0.

Thus at this point C we have:

[f(b) = f(a)]g'(c) = [g(b) — g(@)]f' ().

A similar argument works for h(p) < h(a).



The Mean Value Theorem: Let f: [a, b] = R, be continuous on [a, b] and
differentiable on (a, b), then there exists a ¢, a < ¢ < b such that:
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Proof: Let g(x) = X in the generalized mean value theorem. Then we have:
[f(b) — f(a)]g'(c) = [g(b) — g(@)]f'(c)
f(b) = f(@)](1) = (b —a)f'(c)

—f(b;:i(a) =f'(c); a<c<bh.

Note: The Mean Value Theorem gives us a way to bound |f (b) — f(a)| for a
function:

f(b)_f(a) — f,(C)

b—a

fb) = f(a) = f'(c)(b—a)
If(B) = f(@)| = |f (DI(b — a)
infocx<plf' (OIb —al < |f(b) = f()] < supg<x<p|f'(X)||b — al.



Ex. Prove | sin(b) — sin(a) | < |b — a| for all real values of a, b.

Apply the M.V.T. to [a, b], for any a, b, and the function f (x) = sin(x).

f(x) = sin(x) is continuous on [a, b] because it’s continuous everywhere. It’s
differentiable on (a, b) because it’s differentiable everywhere.

By the mean value theorem there existsa ¢, a < ¢ < b such that:

sin(b)-sin(a)
b—a

sin(b) — sin(a) = (cos(c))(b — a).

= f’(C) = COS(C) or we can write:

Now take absolute values:
|sin(b) — sin(a)| = |[cos(c)||b — a|; now usethe factthat |cosc| <1
|sin(b) — sin(a)| = [cos(c)||b —a| < |b —a| sowe have:

| sin(b) — sin(a) | < |b — a| for all real values of a, b.

1 2 . 1 3
Ex. Usethe M. V. Theorem to prove that > + (6—\/;) T < sln (g) < > + (6—\/;)71

Apply the mean value theorem to the function f(x) = sin(x), on [%, %]

: . T .
Here we want to use an interval that includes S asone endpoint and the other

endpoint being a point where we “know” the value of sin(x), like sin (%) We

T T
could have also used [E’Z]'



As mentioned in the previous example, f (x) = sin(x) satisfies the conditions

of the mean value theorem on this interval.

By the M.V.T. we know there exists a C, % <c< % such that:

. TT ., TT
SIin——Sin—
—x 77— = f'(c) = cos(c); %<c<§
5 6

., T 1
Sin—-———-

y = cosx

—=—= = cos(c)

30

since cos(x) is decreasing on [%,%]

V3 T o T 2

— = cos=> cos(c) > cos=> cos— = —;
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(&) >sin(5) -3 > 26
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Ex. Let f(x) = tan™1x and apply the M.V.T.to [a, b]; a, b > 0 to prove:

b—a _ _ b—a
<tan~ b — tan"la < .
1+b2 1+a?

a_n

4
b. Apply part “a” to [1,5] to get the inequality:

3 — 4 1
=+ <tan 1(—)<E+—.
4 25 3 4 6

a. f(x) =tan"1x iscontinuous everywhere and differentiable everywhere
and thus it satisfies the M.V. T. on any interval [a, b].

By the M.V.T. thereexistsac, 0 < a < ¢ < b such that:

tan~1b—-tan~1la 1 1
b—-a ~ 142’ O<a<c<b (sincef'(x)=

1+x2"

Since0 < a < c<b weknowthata? < c? < b? and
1+a’><1+c?2<1+b?

1 1 1
and finall > > )
y 1+a? 14+c2 1+b2

Now si tan~tb—tan~la 1 lacing in the above it .
ow since = , replacing in the above inequality we get:
b-a 1+cz 7 ePAcng quality we g

1 tan~1b—-tan~1la 1
1+a? b—a 1+b2 "’




Now multiply through by (b — a), which is positive because b > a:

—a

b-
“1p —tan~la < =%
1+b 1+a

4
b. Applying this inequality whena = 1 and b = 3

4 4

3 -1% -1 3
0y < tan (3) tan™ 1 < m (1)2

1

K _ 1
%<tan 1(—)——<g
9

3 14 1
St <tanl(D) <> +-.
4 ' 25 3/ T4 6

Ex. Prove that e* > 1 4+ x forx > 0.

Apply the M.V.T. to the function f (x) = e* on the interval [0, x].

f (x) satisfies the M.V.T. because it’s continuous everywhere and differentiable

everywhere.
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By the M.V.T. we know that thereisac, 0 < ¢ < x such that

e

X_g0
= f'(c) = eS; 0<c<x or
o

=e"; 0<c<ux.

Since 0 < c and f(x) = e* is an increasing function ® = 1 < e®.  Thus we
have:

e*—1
" =e®>1; Nowsolve this inequality for e”*.
e*—1>x

e*>1+x forx > 0.

Ex. Suppose f'(x) exists on (a,b) and sup |f'(x)| < M, show that f(x) is
a<x<b

uniformly continuous on (a, b).

Let x,y € (a, b) then by the M.V.T. we have:

[f () = f)] = M|x —y|.

So if we choose § = €/M then:

f@ ~fO < Mlx—yl <M@) =M (;;) =

and f is uniformly continuous on (a, b).
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Def. A function f: R — R is called monotonically increasing if p > g implies that
f(») = f(q). f is called monotonically decreasing if if p > q implies that

f) = f(@.

Monotonically

. : increasing
Monotonically

decreasing

e

Theorem: Suppose f is differentiable in (a, b):
a. If f'(x) = 0 for all xe(a, b) then f is monotonically increasing.
b. If f'(x) = 0 for all xe(a, b) then f is a constant function

c. If f'(x) < 0 forall xe(a, b) then f is monotonically decreasing.

Proof: Take any two point p, ge(a, b) with p > q. Since f is differentiable in
(a, b), itis also differentiable in (g, p) and continuous in [q, p] (if f is
differentiable at a point ¢, then it is continuous at t) thus f satisfies the

conditions of the Mean Value Theorem on [q, p].

Thus we know:

f@)—f@ =f"(c)(p—q) whereq <c <p.
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a. If f'(x) = 0 forall xe(a, b) then f'(c) = 0,and thus f'(c)(p — q) = 0;

Hence f(p) = f(q) = f'(©)(p—q) 2 0and f(p) = f(q).

So f is monotonically increasing.

b. If f'(x) = 0forallxe(a,b) then f'(c) = 0,and thus f(p) — f(q) = 0;

or f(p) = f(q). So f is a constant function.

c. Iff'(x) < 0forallxe(a,b)then f'(c) <0,andthus f'(c)(p —q) < 0;
Hence f(p) — f(q) = f'(c)(p —q) < 0and f(p) < f(q).

So f is monotonically decreasing.

Ex. Suppose f is differentiable everywhere and f(2) = 6 and |f'(x)| < 4, for
all values of x. show that —6 < f(5) < 18 and -2 < f(0) < 14.

Since f is differentiable everywhere it satisfies the Mean Value Theorem on any
closed interval [a, b]. If we apply the M.V.T. to the interval [2,5] we get:

fG)—fR2)=f"(c)(5—2) where2<c<S5;
Since f(2) = 6, we have:

fGB) =6=("(c)3).

Since |f'(x)| < 4, we know that —4 < f'(x) < 4 forallx, so
—4<f'(c)<4

and =12 < (f'(c))(3) <12.



Since f(5) — 6 = (f'(c))(3) we have:

—12<f(5)—-6<12 or
—6 < f(5) <18.

Now let’s apply the M.V.T. to the interval [0,2]

fR2)—f0O)=f"(c)(2—0) where 0 <c < 2;

Since f(2) = 6, we have:

6—f(0) = (F'(N@.

Since | f'(x)| < 4, weknowthat —4 < f'(x) < 4 forall x, so
—4<flc)<4

and —8 < (f'(c))(2) <8.
since 6 — £(0) = (£'(€))(2) we have:
—8<6-f(0)<8
-14 < —f(0)< 2
14> f(0) = -2.

13



In fact, if f(x) satisfies the Mean Value Theorem on an interval, and
L < f'(x) < K on that interval then we have:

L < IOT@ _ oy < k.

X—a

Solving this inequality for f (x) we get:

fl@+Lx—a)<fx) < f(a)+K(x—a)
fla+Lx—a)=f(x)=f(a)+K(x—a)

Which means the values of f(x) can’t go outside the lines

y=f(@a)+L(x—a) and y=f(a)+K(x—a)

on the interval.

ifx >a

if x < a.

14

fl@)+K(x~a)

— - i N (af_f

AN

= f(@) +

L(x—a)
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Ex. Suppose f is differentiable everywhere and f(1) = 7 and f'(x) = —3, for
all values of x. Show that f(6) = —8. Can we find an upper bound on f(6)?

Since f is differentiable everywhere it satisfies the Mean Value Theorem on any
closed interval [a, b]. If we apply the M.V.T. to the interval [1,6] we get:

f6)—f(1)=f"(c)(6—1) wherel<c<6.

Since f(1) = 7, we have:

f(6)—7=f"(c)(5) wherel<c<6.

Since f'(x) = —3 for all values of x, we know that f'(c) = —3.
Thus we have:

f(6)—7=f"(c)(5) = (—3)(5) = —15; now add 7 to both sides
f(6) = —8.

We cannot find an upper bound on f(6) because we have no upper bound on

f'(©).
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Theorem (L’Hopital’s rule) Suppose f, g are real valued differentiable functions
on (a, b),and g'(x) # O for all xe(a, b), where —c0 < a,b < 400, Suppose

pe(a, b) (so p could be either +co or —) and lim ) = A.
x—p g (%)

If lim f(x) =0, limg(x) =0, or
xX-p X-p

If lim f(x) = +oo, lim g(x) = oo
X—p

X—-p

Then llmf() llmf() A.
x-pg(x)  x-pg(x)

Proof: We’'ll just prove the case where lim f(x) = lim g(x) = 0 and
X—=p X—=p
p #* too.

Since lim f(x) = lim g(x) = 0 and both f, g are continuous at x = p,
X—p X—p

f) =g@) =0.

Choose an x > p. Since f, g are differentiable everywhere, they satisfy the

Extended Mean Value Theore on [p, X], so we can conclude that:

fEO-f@) _ f'(©
gx)-g®) g'(c)

forp <c <x.

Since f(p) = g(p) = 0 we have:

fx) _ f'(c)
gx) g'(o

forp < ¢ < x.
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Now take the limit from the right:

: @: . f’(C)z . ')
xllr;r)l*' g(x) x1—>p+ g' () xl—>p+ g'()’

Now Choose an X < p. Since f, g are differentiable everywhere, they satisfy the

Extended Mean Value Theore on [x, p], so we can conclude that:

@)= _ f©
gp)-gx) g'(c)

forx <c <p.

Since f(p) = g(p) = 0 we have:

f&x) _ f'(c)
gx) g'(o

forx <c <p.

Now take the limit from the left:

N WY 1> W i1
am e = im o= im m

. o ) . .
Since, by assumption lim ; = A, the right hand and left hand limits must
x-p g (X)
fle) f)
be the same (for both and .
ffor both 7 2™ 9o
. x : "(x
Thus we have: lim ACI lim G A

x-p 9(x) X-p g’ (x) B



Ex. Find lim 2%
X. TN x—2 sin(x—2) °

lim(x? — 2x) =0,

xX—2

x2—2x

and lirr% sin(x — 2) = 0, so by L'Hopital’s rule:
X—

222
—llmx———=2.

chl—rg sin(x—2)  x52cos(x—2) 1
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