Continuity and Compactness

Def. A mapping f:E € X — RF is said to be bounded if there exists a real
number M such that || f (x)|| < M for all xeE.

Ex. f(x,¥) = x? + y?is bounded for E = {(x,y)| |x| < 10, |y| < 5}
since |f(x,y)| <100+ 25 =125 = M;

But it is not bounded on E = RZ2.

Ex. f(x,y) = e~*+¥") is hounded for E = R? since

If ()] = e @) <1 =M.

Theorem: Suppose f: X — Y is a continuous mapping of a compact metric space
X into a metric space Y then f(X) is compact.

Proof: Let {V,} be an open cover of f(X).




Since f is continuous, f_l(Va), is an open set in X (why?) and

X S Ug f7H(0).

Thus {f ~1(V,,)} is an open cover of X.

Since X is compact there exists a finite subcover: X € U™, f~1(W;), where
{(Wi} € {Va}-
Since f(f"Y(E)) CE; forECY,

(For example, if f(x) = x2and E = (—1,1); then f~1(-1,1) = (-1,1)
and F(FH(=1,1)) = [0,1) € (—1,1) .)

fX) s UL fFTW)) € Ui W

So {W;} is a finite subcover of f(X), and f (X) is compact.

Theorem: Suppose f is a continuous function on a compact metric space X into
R,and M = sup,exf(p) and m = inf,.xf(p), then there exist points p, geX
such that f(p) = M and f(q) = m.

Proof: Since f is continuous and X is compact, f (X) is a compact subset of R.
By the Heine-Borel theorem we know that any compact subset of R (or R™) is
closed and bounded.

Hence f (X) contains M = sup,exf(p) and m = inf,exf (p).
For suppose M = suppexf(p) and M & f(X).



Then for every h > 0 there exists a point xef (X) suchthat M —h < x < M.

Otherwise, M — h would be an upper bound for f (X) and M wouldn’t be the
least upper bound.

But this means that M is a limit point of f(X). Since f (X) is closed Mef (X).

A similar argument works for the infimum.

This gives us the theorem from first year Calculus that a continuous function on a
closed, bounded interval (i.e. a compact subset of R) takes on its maximum and
minimum values.

Ex. Let f(x) = x?;and X = [-1,1].

f(X) =[0,1] ; minimum value=0, maximum value=1. (In red below)

If X = (—1,1); i.e. X is not compact notice that:

f(X) =10,1); f takes on its minimum value but not its maximum value. (In blue
below)

If X = (0,1), then f(X) = (0,1) and f doesn’t take on either its minimum or
maximum values. (In green below)
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Note: A continuous function on a non-compact set can take on its minimum

and/or maximum values, but it does not have to. A continuous function on a

compact set must take on its maximum and minimum values.

Ex. Let f(x) = sinx; and X = (0,21). Then f(X) = [—1,1]. So f takes on

its maximum and minimum values even though X = (0,2m) is not compact.

f(x) = sinx

£
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Def. Let f: X = Y; X,Y are metric spaces. We say f is uniformly continuous

on X if for every € > 0 there existsa & > 0 forallp,q € X such that if
dx(p,q) < & thendy(f(p), f(q)) <e.

For any interval | € Rwith f: I € R = R, f is uniformly continuous on [
means for every € > 0 there existsa d > 0 forall x, a € [ such that if
|x —al < §then|f(x) — f(a)| <e.

Notice the difference between continuity and uniform continuity:

1. For uniform continuity, & does not depend on the point in X you are at. For
continuity, the § can depend on which point in X you are at (with both continuity

and uniform continuity, & does depend on €).

2. Uniform continuity is a property of a set of points, not a single point.
Continuity is a property at a point and a set of points.

3. If a function is uniformly continuous on a set X, then it is also continuous on X.
However, if a function is continuous on a set X it may, or may not be, uniformly
continuous on X.



1
Ex. Let f(x) = = 0 < x < 1. Show that f(x) is continuous on (0,1) but not

uniformly continuous.

1
To show f(x) = — s continuous at any point ae(0,1) we must show that

1 1
given any € > 0 we can find a § > 0 such thatif |[x — a| < § then |;_E| <E€.

Note that & can depend on both the value of € and the value of "a".

Let’s work backward from the € statement to get the § statement.

1 1 a—x 1
|— —=| = =—|x —aqa
X a ax lax]|
1
We need an upper bound on — = —; sincea, x > 0.
|lax]| ax
a
Choose 6 < > (Since 0 < a < 1, we have to choose a § neighborhood that

1
stays away from x = 0, otherwise - won’t be bounded above).

a
Then we have that |[x — a| < S or

a a
——<x—a<- now add a
2 2
a 3a
- < x<—;
2 2
3 2 1 2 1
Sinceg,x,—a > 0: ->=->—; now multiply through by=> 0 .
2 2 a X 3a a
2 1 2 1 2
—_—>—>— — < =



2 2
=—|x—a|<§|x—a|<;5<e.

2 a?
—25 < € isequivalentto & < —E€.
a 2

2
. ,a a a
Choose & = min (E’ el €) (remember we chose § < > earlier)

Now let’s show that this & works.

2
Iflx —al < § = min(%,%(:‘) then we have:
1 1 1 2
——=—lx—-a| <=|x —al since § < =
X a |ax| a? 2

2 2 2 (a? a?
- — = <—|x—a|<—6§—(—e)=e since § < —E€.
a a a 2

Thus we have shown that f(x) = i continuous at ae(0,1).

1
Now let’s show that f(x) = — s not uniformly continuous on (0,1).

Let’s fixan € > 0.

To be uniformly continuous we need to find a § > 0, that depends only on €,
1 1
X a

such thatif |x — a| < § then < €forall a,x € (0,1).



But if € > 0 is fixed, regardless of what & one chooses, by moving "a" toward 0

=ﬁ|x—a| — oo for |x — a| < 6.

t-a
X a

1
So & must depend on "a" and f(x) = ~ is not uniformly continuous on (0,1).

Ex. Show f(x) = x? is uniformly continuous on [—1,1].

We must show that given any € > 0 there existsad > 0 foralla,x € [—1,1]
such thatif |x — a| < & then |x? — a?| < e.

Let’s start with the € statement:

|x? — a?| = |x — al|x + al.

But we also know that a,x € [—1,1], so |a| < 1land|x| < 1.

Now using the triangle inequality: |[x + a| < |x|+ |a]| <1+ 1 = 2.

So|x? —a?| =|x—allx +a| <2|x—al <26.

So if we can force 26 < €, we’ll almost be done.

So if we choose § < % (notice § doesn’t depend on a) we have:

|x%2 —a?| = |x —allx + a| < 2|x —a because |a| < land|x| <1

|x2—a2|S2|x—a|<26<2(§)=6 because5<%.

Hence f (x) = x? is uniformly continuous on [—1,1].



Theorem: Let f: X — Y, be continuous, X, Y metric spaces with X compact, then
f is uniformly continuous on X.

Notice that f(x) = x2 is uniformly continuous on (—1,1) (as well as on [—1,1])
even though (—1,1) is not compact. The same &, € argument that shows that

f(x) = x?is uniformly continuous on [—1,1] also show that it’s uniformly

continuous on (—1,1). Thus a continuous function on a compact set must be
uniformly continuous on the compact set. A continuous function on a non-
compact set, may or may not be uniformly continuous on that set.

Some special properties of uniformly continuous functions:

1. If f: E - Y is uniformly continuous on a metric space E and {p,, } is a

Cauchy sequence in E, then {f (p,,) } is a Cauchy sequence in Y.

1
Notice that f(x) = —is continuous on (0, ©), but not uniformly

continuous. {%} is a Cauchy sequence in (0, 00), but {f (l)} = {n}is

n
not.

2. If f:E € R — Ris uniformly continuous, E a bounded interval, then

fE f(x)dx is finite.

1 11
flx) = — is continuous on (0,1), but not uniformly continuous. fo - dx

is not finite.

Notice also that you can have bounded continuous functions that are not

. (1
uniformly continuous (e.g. f (x) = sin (;); 0 < x < 27) and unbounded

continuous functions that are uniformly continuous
(eg. f(x) = x; —00 < x < 00).
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Ex. Provethat f (x) = %x is uniformly continuous on [2, o).

We must show given any € > 0 there existsa § > 0 forall a,x € [2,00) such

a
thatif [x —a| < § then |[——— < €.
— 1—a
Let’s start with the € statement:
x o al|_ |x(1—a)—a(1—x) _ (x—a)
1-x 1-al | (1-00-a |  |la-v0a-a
1
- |X - a” (1—x)(1—a) |

Now we must find an upper bound on | a = | independent of “a”.

01
. 1 1
Since2 < xand2 < a: —1<—<0 and -1 <—<0.
1—x 1—a
Thus we can say: 0< (L)(L) <1
v: 1—x/\M—a’ —
Thus we have:
X a 1
—_— | = f— —_— < —_— =
1ol =[x —all Tna—a | = lx —al =34.

So if we can force & < € we’ll almost be done.
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So choose § < € which is independent of "a".
Now let’s show & < € works.

If |[x —al <& < €then:

X a 1
2 L=y = _ < <
|1—x 1-a Ix — a |(1—x)(1—a)| <|x—al because2 <xand2<a

X a

1—x 1—a

<|lx—al|<d<e because § < €.

Hence f(x) = :—x is uniformly continuous on [2, ©0).



