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                                            Continuity and Compactness 

 

Def.  A mapping 𝑓: 𝐸 ⊆ 𝑋 → ℝ𝑘 is said to be bounded if there exists a real 

number 𝑀 such that ‖𝑓(𝑥)‖ ≤ 𝑀 for all 𝑥𝜖𝐸. 

 

Ex.  𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 is bounded for 𝐸 = {(𝑥, 𝑦)| |𝑥| < 10, |𝑦| ≤ 5} 

     since  |𝑓(𝑥, 𝑦)| ≤ 100 + 25 = 125 = 𝑀; 

     But it is not bounded on 𝐸 = ℝ2. 

 

Ex.  𝑓(𝑥, 𝑦) = 𝑒−(𝑥2+𝑦2)  is bounded for 𝐸 = ℝ2 since  

      |𝑓(𝑥, 𝑦)| = |𝑒−(𝑥2+𝑦2)| ≤ 1 = 𝑀.   

 

Theorem:  Suppose 𝑓: 𝑋 → 𝑌 is a continuous mapping of a compact metric space 

𝑋 into a metric space 𝑌 then 𝑓(𝑋) is compact. 

 

Proof:   Let {𝑉𝛼} be an open cover of 𝑓(𝑋). 
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Since 𝑓 is continuous, 𝑓−1(𝑉𝛼),  is an open set in 𝑋 (why?) and                           

𝑋 ⊆ ⋃ 𝑓−1(𝑉𝛼)𝛼 . 

Thus {𝑓−1(𝑉𝛼)} is an open cover of 𝑋. 

 

Since 𝑋 is compact there exists a finite subcover:  𝑋 ⊆ ⋃ 𝑓−1(𝑊𝑖)𝑛
𝑖=1 ,  where  

{𝑊𝑖} ⊆ {𝑉𝛼}.  

Since 𝑓(𝑓−1(𝐸)) ⊆ 𝐸;  for 𝐸 ⊆ 𝑌, 

(For example, if 𝑓(𝑥) = 𝑥2 and 𝐸 = (−1,1);  then 𝑓−1(−1,1) = (−1,1) 

and 𝑓(𝑓−1(−1,1)) = [0,1) ⊆ (−1,1) . ) 

 

𝑓(𝑋) ⊆  ⋃ 𝑓(𝑓−1(𝑊𝑖)𝑛
𝑖=1 ) ⊆ ⋃ 𝑊𝑖

𝑛
𝑖=1  . 

So  {𝑊𝑖} is a finite subcover of 𝑓(𝑋), and 𝑓(𝑋) is compact. 

 

Theorem:  Suppose 𝑓 is a continuous function on a compact metric space 𝑋 into 

ℝ, and  𝑀 = 𝑠𝑢𝑝𝑝𝜖𝑋𝑓(𝑝)  and  𝑚 = 𝑖𝑛𝑓𝑝𝜖𝑋𝑓(𝑝) ,  then there exist points 𝑝, 𝑞𝜖𝑋  

such that 𝑓(𝑝) = 𝑀  and 𝑓(𝑞) = 𝑚. 

 

Proof:  Since 𝑓 is continuous and 𝑋 is compact, 𝑓(𝑋) is a compact subset of ℝ.  

By the Heine-Borel theorem we know that any compact subset of ℝ (or ℝ𝑛) is 

closed and bounded.   

Hence 𝑓(𝑋) contains 𝑀 = 𝑠𝑢𝑝𝑝𝜖𝑋𝑓(𝑝)  and  𝑚 = 𝑖𝑛𝑓𝑝𝜖𝑋𝑓(𝑝). 

For suppose 𝑀 = 𝑠𝑢𝑝𝑝𝜖𝑋𝑓(𝑝)  and 𝑀 ∉ 𝑓(𝑋). 
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Then for every ℎ > 0 there exists a point 𝑥𝜖𝑓(𝑋) such that 𝑀 − ℎ < 𝑥 < 𝑀. 

Otherwise, 𝑀 − ℎ would be an upper bound for 𝑓(𝑋) and 𝑀 wouldn’t be the 

least upper bound. 

But this means that 𝑀 is a limit point of 𝑓(𝑋).  Since 𝑓(𝑋) is closed 𝑀𝜖𝑓(𝑋). 

A similar argument works for the infimum.  

 

This gives us the theorem from first year Calculus that a continuous function on a 

closed, bounded interval (i.e. a compact subset of ℝ) takes on its maximum and 

minimum values.   

 

Ex.  Let 𝑓(𝑥) = 𝑥2; and  𝑋 = [−1,1]. 

𝑓(𝑋) = [0,1] ;  minimum value=0,    maximum value=1.  (In red below)  

 

If 𝑋 = (−1,1);  i.e. 𝑋 is not compact notice that: 

𝑓(𝑋) = [0,1) ;  𝑓 takes on its minimum value but not its maximum value. (In blue 

below)  

 

If 𝑋 = (0,1),   then 𝑓(𝑋) = (0,1) and 𝑓 doesn’t take on either its minimum or 

maximum values. (In green below) 

 −1                                        1 

1 

−1                                         1 

1 

−1                                             1 

1 
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Note:  A continuous function on a non-compact set can take on its minimum 

and/or maximum values, but it does not have to.  A continuous function on a 

compact set must take on its maximum and minimum values.  

 

Ex.  Let 𝑓(𝑥) = 𝑠𝑖𝑛𝑥;  and 𝑋 = (0,2𝜋).  Then 𝑓(𝑋) = [−1,1]. So 𝑓 takes on 

its maximum and minimum values even though 𝑋 = (0,2𝜋) is not compact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2𝜋 0 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥 

1 

−1 
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Def.  Let 𝑓: 𝑋 → 𝑌;    𝑋, 𝑌  are metric spaces. We say 𝑓 is uniformly continuous 

on 𝑋 if for every 𝜖 > 0 there exists a 𝛿 > 0 for all 𝑝, 𝑞 ∈ 𝑋 such that if 

𝑑𝑋(𝑝, 𝑞) < 𝛿 then 𝑑𝑌(𝑓(𝑝), 𝑓(𝑞)) < 𝜖. 

 

For any interval 𝐼 ⊆ ℝ with 𝑓: 𝐼 ⊆ ℝ → ℝ, 𝑓 is uniformly continuous on  𝐼 

means for every 𝜖 > 0 there exists a 𝛿 > 0 for all 𝑥, 𝑎 ∈ 𝐼 such that if 

|𝑥 − 𝑎| < 𝛿 then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜖. 

 

Notice the difference between continuity and uniform continuity:  

1.   For uniform continuity, 𝛿 does not depend on the point in 𝑋 you are at.  For 

continuity, the 𝛿 can depend on which point in 𝑋 you are at (with both continuity 

and uniform continuity, 𝛿 does depend on 𝜖).   

2.  Uniform continuity is a property of a set of points, not a single point.  

Continuity is a property at a point and a set of points.   

3.  If a function is uniformly continuous on a set 𝑋, then it is also continuous on 𝑋.  

However, if a function is continuous on a set 𝑋 it may, or may not be, uniformly 

continuous on 𝑋. 
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Ex. Let  𝑓(𝑥) =
1

𝑥
 ;   0 < 𝑥 < 1.  Show that 𝑓(𝑥) is continuous on (0,1) but not 

uniformly continuous.   

 

To show 𝑓(𝑥) =
1

𝑥
    is continuous at any point 𝑎𝜖(0,1) we must show that 

given any 𝜖 > 0 we can find a 𝛿 > 0 such that if |𝑥 − 𝑎| < 𝛿 then |
1

𝑥
−

1

𝑎
| < 𝜖 . 

Note that 𝛿 can depend on both the value of 𝜖 and the value of "𝑎".  

 

Let’s work backward from the 𝜖 statement to get the 𝛿 statement. 

                    |
1

𝑥
−

1

𝑎
| = |

𝑎−𝑥

𝑎𝑥
| =

1

|𝑎𝑥|
|𝑥 − 𝑎|.   

 

We need an upper bound on  
1

|𝑎𝑥|
=

1

𝑎𝑥
 ;  since 𝑎, 𝑥 > 0.  

Choose 𝛿 ≤
𝑎

2
 .    (Since 0 < 𝑎 < 1,  we have to choose a 𝛿 neighborhood that 

stays away from 𝑥 = 0, otherwise 
1

𝑎𝑥
  won’t be bounded above).  

 

Then we have that  |𝑥 − 𝑎| <
𝑎

2 
     or      

                              −
𝑎

2
< 𝑥 − 𝑎 <

𝑎

2
                now add a 

                                      
𝑎

2
< 𝑥 <

3𝑎

2
 ;     

Since 
𝑎

2
, 𝑥,

3𝑎

2
> 0:        

2

𝑎
>

1

𝑥
>

2

3𝑎
 ;              now multiply through by 

1

𝑎
> 0 .                                                                                    

                                       
2

𝑎2 >
1

𝑎𝑥
>

2

3𝑎2   ⟹   
1

|𝑎𝑥|
<

2

𝑎2 . 
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Thus we have:   if 𝛿 ≤
𝑎

2
  then 

            |
1

𝑥
−

1

𝑎
| =

1

|𝑎𝑥|
|𝑥 − 𝑎| <

2

𝑎2
|𝑥 − 𝑎| <

2

𝑎2 𝛿 < 𝜖.  

            
2

𝑎2 𝛿 < 𝜖  is equivalent to 𝛿 <
𝑎2

2
𝜖. 

Choose 𝛿 = min (
𝑎

2
,

𝑎2

2
𝜖)      (remember we chose 𝛿 ≤

𝑎

2
 earlier)      

 

Now let’s show that this 𝛿 works. 

If |𝑥 − 𝑎| < 𝛿 = min(
𝑎

2
,

𝑎2

2
𝜖)                                             then we have: 

|
1

𝑥
−

1

𝑎
| =

1

|𝑎𝑥|
|𝑥 − 𝑎| <

2

𝑎2
|𝑥 − 𝑎|                          since 𝛿 ≤

𝑎

2
 

|
1

𝑥
−

1

𝑎
| <

2

𝑎2
|𝑥 − 𝑎| <

2

𝑎2 𝛿 ≤
2

𝑎2 (
𝑎2

2
𝜖) = 𝜖       since 𝛿 ≤

𝑎2

2
𝜖.  

 

Thus we have shown that 𝑓(𝑥) =
1

𝑥
   continuous at 𝑎𝜖(0,1). 

 

 

Now let’s show that 𝑓(𝑥) =
1

𝑥
   is not uniformly continuous on (0,1). 

Let’s fix an 𝜖 > 0. 

To be uniformly continuous we need to find a 𝛿 > 0, that depends only on 𝜖,  

such that if  |𝑥 − 𝑎| < 𝛿 then |
1

𝑥
−

1

𝑎
| < 𝜖 for all  𝑎, 𝑥 ∈ (0,1). 
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But if 𝜖 > 0 is fixed, regardless of what 𝛿 one chooses, by moving "𝑎" toward 0  

|
1

𝑥
−

1

𝑎
| =

1

|𝑎𝑥|
|𝑥 − 𝑎| → ∞ for |𝑥 − 𝑎| < 𝛿.   

So 𝛿 must depend on "𝑎" and  𝑓(𝑥) =
1

𝑥
   is not uniformly continuous on (0,1). 

 

Ex.  Show 𝑓(𝑥) = 𝑥2 is uniformly continuous on [−1,1]. 

We must show that given any 𝜖 > 0 there exists a 𝛿 > 0 for all 𝑎, 𝑥 ∈ [−1,1]  

such that if   |𝑥 − 𝑎| < 𝛿 then  |𝑥2 − 𝑎2| < 𝜖.  

 

Let’s start with the 𝜖 statement: 

|𝑥2 − 𝑎2| = |𝑥 − 𝑎||𝑥 + 𝑎|.   

 

But we also know that  𝑎, 𝑥 ∈ [−1,1] ,  so  |𝑎| ≤ 1 and |𝑥| ≤ 1. 

Now using the triangle inequality:  |𝑥 + 𝑎| ≤ |𝑥| + |𝑎| ≤ 1 + 1 = 2.  

 

So |𝑥2 − 𝑎2| = |𝑥 − 𝑎||𝑥 + 𝑎| ≤ 2|𝑥 − 𝑎| < 2𝛿. 

So if we can force  2𝛿 < 𝜖, we’ll almost be done. 

So if we choose 𝛿 <
𝜖
2

   (notice 𝛿 doesn’t depend on 𝑎) we have:     

|𝑥2 − 𝑎2| = |𝑥 − 𝑎||𝑥 + 𝑎| ≤ 2|𝑥 − 𝑎|         because  |𝑎| ≤ 1 and |𝑥| ≤ 1  

|𝑥2 − 𝑎2| ≤ 2|𝑥 − 𝑎| < 2𝛿 < 2 (
𝜖
2

) = 𝜖       because 𝛿 <
𝜖
2
 .  

Hence 𝑓(𝑥) = 𝑥2 is uniformly continuous on [−1,1]. 
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Theorem:  Let 𝑓: 𝑋 → 𝑌, be continuous, 𝑋, 𝑌 metric spaces with 𝑋 compact,  then 

𝑓 is uniformly continuous on 𝑋. 

 

Notice that 𝑓(𝑥) = 𝑥2 is uniformly continuous on (−1,1)  (as well as on [−1,1])  

even though (−1,1) is not compact.  The same 𝛿, 𝜖 argument that shows that  

𝑓(𝑥) = 𝑥2 is uniformly continuous on [−1,1] also show that it’s uniformly 

continuous on (−1,1).    Thus a continuous function on a compact set must be 

uniformly continuous on the compact set.  A continuous function on a non-

compact set, may or may not be uniformly continuous on that set. 

 

Some special properties of uniformly continuous functions: 

1.  If 𝑓: 𝐸 → 𝑌 is uniformly continuous on a metric space 𝐸 and {𝑝𝑛} is a 

Cauchy sequence in 𝐸, then {𝑓(𝑝𝑛)} is a Cauchy sequence in 𝑌. 

Notice that 𝑓(𝑥) =
1

𝑥
 is continuous on (0, ∞), but not uniformly 

continuous.  {
1

𝑛
} is a Cauchy sequence in (0, ∞), but {𝑓 (

1

𝑛
)} = {𝑛} is 

not.  

 

2. If 𝑓: 𝐸 ⊆ ℝ → ℝ is uniformly continuous, 𝐸 a bounded interval, then 

∫ 𝑓(𝑥)𝑑𝑥
𝐸

 is finite. 

 𝑓(𝑥) =
1

𝑥
  is continuous on (0,1), but not uniformly continuous.  ∫

1

𝑥
𝑑𝑥

1

0
 

is not finite.  

 

Notice also that you can have bounded continuous functions that are not 

uniformly continuous (e.g. 𝑓(𝑥) = sin (
1

𝑥
) ;      0 < 𝑥 < 2𝜋) and unbounded 

continuous functions that are uniformly continuous  

(e.g. 𝑓(𝑥) = 𝑥;  −∞ < 𝑥 < ∞). 
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Ex.   Prove that 𝑓 (𝑥) =
𝑥

1−𝑥
  is uniformly continuous on [2, ∞). 

 

We must show given any 𝜖 > 0 there exists a  𝛿 > 0 for all  𝑎, 𝑥 ∈ [2, ∞) such 

that if |𝑥 − 𝑎| < 𝛿 then  |
𝑥

1−𝑥
−

𝑎

1−𝑎
| < 𝜖 . 

 

Let’s start with the 𝜖 statement: 

|
𝑥

1−𝑥
−

𝑎

1−𝑎
| = |

𝑥(1−𝑎)−𝑎(1−𝑥)

(1−𝑥)(1−𝑎)
| = |

(𝑥−𝑎)

(1−𝑥)(1−𝑎)
|  

                           = |𝑥 − 𝑎||
1

(1−𝑥)(1−𝑎)
|.       

  

Now we must find an upper bound on |
1

(1−𝑥)(1−𝑎)
|  independent of “a”. 

 

Since 2 ≤ 𝑥 and 2 ≤ 𝑎:        −1 ≤
1

1−𝑥
< 0   and   −1 ≤

1

1−𝑎
< 0 .       

Thus we can say:                                             0 < ( 1
1−𝑥

)( 1
1−𝑎

) ≤ 1.     

       

Thus we have: 

|
𝑥

1−𝑥
−

𝑎

1−𝑎
| = |𝑥 − 𝑎||

1

(1−𝑥)(1−𝑎)
| ≤ 1|𝑥 − 𝑎| = 𝛿.      

So if we can force 𝛿 < 𝜖 we’ll almost be done. 
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So choose 𝛿 < 𝜖   which is independent of "𝑎". 

Now let’s show 𝛿 < 𝜖 works.      

If  |𝑥 − 𝑎| < 𝛿 < 𝜖 then: 

|
𝑥

1−𝑥
−

𝑎

1−𝑎
| = |𝑥 − 𝑎| |

1

(1−𝑥)(1−𝑎)
| < |𝑥 − 𝑎|    because 2 ≤ 𝑥 and 2 ≤ 𝑎 

|
𝑥

1−𝑥
−

𝑎

1−𝑎
| < |𝑥 − 𝑎| < 𝛿 < 𝜖                             because  𝛿 < 𝜖.  

 

Hence 𝑓(𝑥) =
𝑥

1−𝑥
  is uniformly continuous on [2, ∞). 


