Continuity and Compactness- HW Problems

1. In each case either prove whether the function takes on its maximum value or its minimum value on the given domains with a compactness argument or a method from 1st year calculus or demonstrate that it doesn't.

a.
$$f(x) = x^3$$
; A=[0,1]; B=(0,1)
b. $f(x) = cosx$; A = [0,2 π], B = $\left(0, \frac{3\pi}{2}\right)$, C = (0,2 π),
D = $\left(\frac{\pi}{2}, \frac{5\pi}{2}\right)$.

- 2. Using the ϵ , δ definition of uniform continuity:
 - a. Prove that $f(x) = x^3$ is uniformly continuous on (-2,2). (Hint: recall $x^3 a^3 = (x a)(x^2 + ax + a^2)$)
 - b. Prove that $f(x) = x^2$ is not uniformly continuous on $(0, \infty)$.
 - c. Prove that $f(x) = \frac{1}{x}$ is uniformly continuous on $(\frac{1}{2}, \infty)$.
 - d. Prove that $f(x) = \frac{1}{1+x}$ is uniformly continuous on $(-\infty, -\frac{3}{2}]$.
 - e. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[1, \infty)$. See hint on problem number 6 in the HW on Continuity. Note: although you are not being asked to show this,

 $f(x) = \sqrt{x}$ is actually uniformly continuous on $[0, \infty)$, since it's uniformly continuous on [0,1], because [0,1] is compact.