Continuity

Def. Suppose X and Y are metric spaces, E € X, peE, and f:E —- Y. Then f is
said to be Continuous at p if for every € > 0 there exists a § > 0 such that for all
points x€eE, if dy(x,p) < & then dy(f(x), f(p)) < €. Equivalently, we can say
that f is Continuous at p if )lcl_)rrzlj f(x) = f(p).

If X =Y = Rthen f(x) is Continuous at x = ¢ means for every € > 0 there
exists a8 > 0 such thatif |[x —c| < §then |f(x) — f(c)]| < €.

y=f(x)
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Def. If f is Continuous at every point of E, then f is said to be Continuous on E.

Note: For lim f(x) to exist, f(p) does not need to be defined (although it can
xX-p

be). For f(x) to be continuous at peE, f(p) must be defined and equal to
lim f(x).
X-p

If peE is an isolated point (i.e., there exists a neighborhood of p, N(p) € X, such
that N(p) N E = {p}) then every function that has p in its domain is continuous
at peE. We can see this by choosing § > 0 such that dy(x,p) < & implies x = p.

Thendy (f(x),f(p)) = 0<e.

Ex. Let E =[-1,1]U {5} € R; and f:E — Ris any function. Show that f is
continuous at x = 5.

Givenany e > 0, if § < 3, for example, and x € E, then d(x,5) < 3 implies
thatx = 5,andthus |[f(x) — f(5)| = |f(5) —f(5)| =0<e.

Thus f is continuous at x = 5.



Theorem: Suppose X, Y, Z are metric spaceswith E € X, f: E = Y and

g:f(E) > Z. Leth:E —» Z by h(x) = g(f(x)) for xeE. If f is continuous at peE
and if g is continuous at f(p)eY, then h is continuous at peE.

Proof: We must show that given any € > 0 there exists a & > 0 such that for all
points xeE, if dx (x,p) < & then dz(h(x), h(p)) = dz(g(f(x)), g(f (p))) < €.

gWNs (f(p))
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Since g is continuous at f(p), we know we can find a §' > 0 such that if
dy(y, f(p)) < 8" then dz(g(»), g(f @) < .

Since f is continuous at peE, we know we can find a § > 0 such that if

dx(x,p) < & thendy(f(x),f(p)) < & forall xeE.

But this means that if dy (x, p) < & then dy (f (%), f(p)) < &' for all xeE, which
in turn means that d;(g(f (x)), g(f (p))) < €.

Hence we have shown that h(x) = g(f(x)) is continuous at x = p.

Theorem: A mapping f: X = Y, X,Y metric spaces is continuous if and only if
f~Y(V)is openin X for every opensetV C Y.

Proof: First assume f is continuous on X and show that f (V) is open in X for
everyopensetV CY.




Let V be any open subset of Y. We have to show that every pointp in f~1(V) is
an interior point of f~1(V).

Suppose pef ~1(V). Since V is open, there exists an € > 0 such that if
dy(f(p),y) < €then yeV (this just says that since V is open, we can find a
neighborhood of f(p) that lies entirely inside V).

Since f is continuous at p, there exists a § > 0 such that if dy(x, p) < § then

dy(f(x), f(p)) < €, thus xef ~1(V).

Thus p is an interior point of f~1(V), and f~1(V) is open.

Now let’s assume that f ~1(V) is open in X for every open set V € Y and prove
that f is a continuous function on X.

Fix a peX and choose any € > 0.

V = Ne(f ()

Ns(p) Y
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We need to show that we can find a § > 0 such that if dy(x, p) < & then
dy(f(x), f(p)) < €.

Let V be the set of all yeY such that dy (y, f(p)) < e.

IV isan opensetinY (since it’s a neighborhood of a point) and hence, by
assumption, f~1(V)is openin X.



Since f~1(V) is open there exists a § > 0 such that if dx(x,p) < § thenx € f~1(V).
But if xef ~1(V) then f(x)€eV which means that dy (f (x), f(p)) < €.
Hence f is continuous at peX for every p.

Thus f is continuous on X.

Cor. A mapping f:X — Y, X,Y metric spaces is continuous if and only if f~1(V)
is closed in X for every closed setV C Y.

Proof: If V is closed then V¢ is open. Thus by the theorem f is continuous if and
only if f~1(V¢) is open. The corollary follows from the fact that

F7rve) = (F71n)”.
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Note: If f: X — Y is continuous on X, it does NOT imply that:

1. ifV € Xisopenthen f(V) €Y isopen
2. IfW < Xisclosed then f(W) C Y is closed.

Ex. Let f:R > R by f(x) = x?% is continuous at every point (we will show this
shortly) in R. However, if V = (=2, 2), which is open in R, then f(V) = [0,4)
which is not open in R.



Ex. Let f:R > Rby f(x) = =
W = [0, ), which is closed in R, then f(W) = (0,1] which is not closed in R.

is continuous at every point in R. However, if

Ex. Prove that f(x) = x? is continuous at x = 0 and x = a.

To prove that f(x) = x? is continuous at x = 0 we must show that given any
€ > 0 there exists a 8 > 0 such thatif |[x — 0] < & then [x? — 0] < €,

i.e. we must prove that lim x? = 0.

x-0

Let’s start with the € statement and work backwards to the & statement.

|x2 =0 = |x|> <€ or |x| <+e.
Now choose § = /€.

Now let’s show that this & works.
If|x — 0| = [x] <8 =+e then
|x2 — 0| = |x|* <€

Hence lirr(l) x2 =0, and f(x) = x? is continuous at x = 0.
X—



To prove that f(x) = x? is continuous at x = a we must show that given any
€ > 0 there exists a 8 > 0 such thatif |[x — a] < & then |x? — a?| <€,

i.e. we must prove that lim x? = a?.

xX—a

Let’s start with the € statement and work backwards to the § statement.
X2 —a?| = |(x +a)(x —a)| = |x + al||x — q|

|x — a| is part of the § statement, the question is how big can |x + a| be?

Let’s choose § < 1.
That means: lx —al <1 or equivalently:
—-1<x—-a<l1 now add “a” to the entire inequality:
a—1<x<a+1;
2a—1<x+a<2a+1
—2]al-1<2a-1<x+4+a<2a+1<2a|l+1 so
|lx + a| < 2]a] + 1.
This now means that:

|x?2 —a?| = |x + al|x —a] < 2|a] + 1)|x — a.

So if we can ensure that (2|a| + 1)|x — a| < € or equivalently:

lx —al <
2|lal+1

we’ll be in business.



Sojustlet 6 = min (1, ) (notice that & depends on both “a” and €).

2la |+1

Now let’s show that this § works:

Given that |[x — a| < & we know that :

|x? —a?| = |x+al|lx —al < 2la] + 1)|x — a] (since§ < 1)
< 2|al+1)6
< (2|al + 1)(2| |+1 =€ (since § < A E|+1)

Hence lim x? = a?, and f(x) = x? is continuous at x = a.
xX—a

Ex. Let f(x) =x% ifx#0

=4 ifx=0.

a. Using a §, € argument prove that f(x) is discontinuous at x = 0 (i.e. prove

that}ci_r)r(l)f(x) *+f(0)=4.)

b. Prove that f(x) is not continuous on R by finding an open set U such that
f~1(U) is not open.

c. Prove that f(x) is not continuous on R by finding an closed set W such that
f~1(W) is not closed.
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a. We need to show that there exists an € > 0 such that no matter how small
§>0is, 0<|x—0|<6doesnotimply |x? —4| < €.

Choose € = 1. (We want € to be less than |actual limit-value of function|)
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We need to show that no matter how smalld > 0is, 0 < |x — 0| < & does not
imply [x2 — 4| < 1 ie, |x? — 4| = 1, for at least one x with 0 < |x| < §.

Notice that by the triangle inequality: |—4| < [x% — 4| + |—x?|

Since: la+b| < |a| + |b|; leta=x*>—4, b=—-x? a+b=—4

This inequality is the same as: 4 < |x% — 4| + [x?]
or 4 —x* < |x* — 4.

If§ < 1then|x — 0] = |x] <8 <1 andthus |x?| = x? < 1; So we have:

3<4—x?%<|x? -4

And since € = 1: e=1<3<4—x%<|x?—-4|.
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Soif§ < 1 every x where0 < |x| < 8, has [x2 — 4| > e = 1.

If & > 1 then {x]| |x| < 1} is contained in the set of x, where 0 < |x| < d.
Thus the set points where § > 1 contains points where [x? — 4| > € = 1.

So f(x) is discontinuous at x = 0.

b. We need to show we can find an open set U € R such that f~1(U) is not
open.

We want to choose the set U so that it includes the “jump” value (in this case
f(0) = 4) but not the point 0 = }Cir% f(x). Let's take U = (3,5), for example.
AU ={x|3 < f(x) <5})= {x|3<x?<5, x#0}u{0}
fHU) = {¥3 <x <5} u{—V/5 <x < =3} U {0}

|
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f~1(U) is not open because {0} is not an interior point of f ~1(U) (for example,
there is no neighborhood of {0} that lies totally inside of f~1(U) ).
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c. We need to find a closed set W € R such that f ~1 (W) is not closed.

Let W = [~1,1]. Then f 1 (W) = [—1, 0) U (0, 1] which is not closed in R.

=0 x=0
is continuous at x = 0.
\\ y #y/
h y
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We must show that given any € > 0 there existsa § > 0 such thatif |[x — 0| < &
then |f(x) — 0] < ¢€; ie,if|x| <& then |f(X)]| <e€.

.1
We only need to worry about where f(x) = xsm(;) sinceatx =0, |[f(0)]| < e.

Let’s start with the € statement:

|xsm(i)| = |x||sm(§)| < |x| < & (since|sin(b)| < 1forallb € R)

Letd = €.

Then [x] < §  implies that:

jxsin()—0| = |xsin(7)| = |x|[sin(z)| < |x| < 8

Il
m

Soif [x — 0] < § then |f(x) — 0] < €.

Hence lirr(l) f(x) = f(0) and f(x) is continuous at x = 0.
X—



14

Ex. Let f(x) = xsin(i) x#+0
=1 x =0.

Prove that f(x) is discontinuous at x = 0, usinga &, € argument.

We need to show that there exists an € > 0 such that no matter how small

60> 0is, 0<]|x—0|< d doesnotimply xsin(i)—l <E.

Choosee =1/2 (e = % is less than |actual limit-value of function|)

1.5 y=15
1
y=f(x) | 1
0.5 y =105
( \
|\ J
—0.5 0.5

We need to show that no matter how smalld > 0is, 0 < |[x — 0| <  does
.1 1 .1 1
not imply |xSln(;) — 1| <jie, |xsm(;) — 1| = -, for at least one x with

|x| < 6.

1 1
In fact, we’ll show that |xsm(;) — 1| = ~forall x with 0 < |x| < &, fora

given 0.
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By the triangle inequality we have:
. (1 . (1
|—1] < |xsm (—) — 1| + | — xsin (—) |
X X

Since: |a + b| < |a| + |b];
a = xsin G) —1, b= —xsin G), a+b=-1.

1< |xsin (i) — 1| + |xsin G) |

1 — |xsin G) | < |xsin G) - 1|

. (1 1
Assume § < =; then |xSln (;)l < |x| < >

N

1
This means that for x| < 5

€ = % < 1-—|xsin G)| < |xsin G) — 1|.

1 1
If§ > 5 then {x] |x]| < 5} is contained in the set of X, where |x| < §. Thus

1 .1 1
the set points where § > > contains points where |xsm(;) — 1| >€e= 3

So f(x) is discontinuous at x = 0.
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Theorem: Let f and g be continuous functions from a metric space X into R (or
the complex numbers). Then f + g, fg, g and (where g(x) # 0) are

continuous on X.

Proof: At any isolated point peX, we know we can find a neighborhood of p that
does not intersect X in any other point than p.

Thus there exists a § > 0 such thatif d(p, x) < & then x = p. Hence for that
6, |h(x) — h(p)| = |h(p) — h(p)| = 0 < € (here h represents any of

f+g, fg, and g (where g(x) # 0)).

At a limit point of peX since f and g are continuous we have:

}Cgrr;f(x)=f(p) and }Ciggg(x) = g(p).

By an earlier limit theorem we have:

Mm(f(x) +90)) = f(p) +9(®)

}Cigl;lo f)gx) = f(p)g)

. f) _ f() .
9161_% gx) g’ gx) #0; g(p) #0.

Since f(x) = x and f (x) = constant are continuous functions, the above
theorem implies that all polynomials and rational functions where the
denominator is non-zero are continuous.
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Theorem: a. Let f;(x), f>(x), f3(x), ..., fy (x) be real valued functions on a
metric space X, and let f be a mapping of X = R* by

f(x) = (f1(x), f,(x), f5(x), ..., f(x)); xeX then f is continuous if and only
if each f; (x), f5(x), f5(x), ..., fr (x) is continuous.

b. If f, g: X > R¥ are continuous, then f + g and f * g are
continuous.

Proof: a. Assume f: X — R¥ is continuous at x = p and show
fi(x),i =1, ...,n are continuous at X = p.

So for all € > 0 there exists a § > 0 such thatif d(x,p) < § then

d(f(x),f(p)) < €. Thatis:

L (fi0) - i) <.

However, notice that

£,00 = fi@)] < Cka(fix) = i)*) <e.

So the same § that forces d(f(x),f(p)) < € will force d(fl(x),fl(p)) <€,

Thus f;(x),i = 1, ...,n are continuous at x = p.
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Now assume f;(x),i = 1, ..., n are continuous and show f (x) is continuous.

So for all € > 0 there exists a §; > 0 such thatif d(x,p) < §; then

d(fi(0), i) < ¢/n.

Choose 6 = min(dy, ..., 8,;) and notice that:

EL(fi00) — i) ) < TG - i@ <n(S) =«

Thus f(x) is continuous at x = p.

b. Follows from part a and the continuity theorem on page 16.



