Finite, Countable, and Uncountable Sets- HW Problems

1. Prove the following sets are Countable (i.e., there is a 1-1 mapping onto the set $J = \{1, 2, 3, 4, ...\}$)

- a. $A = \{-2, -4, -6, -8, ...\}$
- b. $B = \{-1, -3, -5, -7, ...\}$
- *c*. $C = \{-1, -4, -9, -16, ...\}$
- 2. Show that sets *B* and *C* are equivalent to $A = \{x \in \mathbb{R} | 0 < x < 1\}$
 - a. $B = \{x \in \mathbb{R} | 0 < x < 10\}$
 - b. $C = \{x \in \mathbb{R} | -4 < x < -1\}$

3a. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Find $f^{-1}(16)$ and $f^{-1}(U)$, where U = [9, 16].

b. $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = x^2 + y^2$. Find $f^{-1}(0)$, $f^{-1}(1)$, and $f^{-1}(U)$, where U = (1,4).

- 4. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and let U = (-1, 1). a. Find $f^{-1}(U)$.
 - b. Find $f(f^{-1}(U))$. (Notice that $f(f^{-1}(U)) \subseteq U$, but $f(f^{-1}(U)) \neq U$)

5. Let $A = \{x \in \mathbb{R} | 0 < x < 2\}$ and $B = \{x \in \mathbb{R} | 0 < x < 6\}$. Show that the set A is equivalent to the set B.

6. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and let U = (-1, 4). Find $f^{-1}(U)$.