Group Homomorphisms

Recall that an isomorphism of a group G with a group G’ is a 1-1 function

mapping G onto G’ such that:
d(xy) = p(x)p(y) forallx,y € G.

Isomorphic groups have the same group structure.

Def. Amap ¢:G — G’ is a group homomorphism if

¢ (xy) = ¢p(x)p(y) forallx,y € G.

An isomorphism is a type of homomorphism that is 1-1 and onto.

For any groups G, G' there is always at least one homomorphism, ¢: G = G,

given by ¢(g) = e’ forall g € G. This is called the trivial homomorphism.
However, this is not a very useful homomorphism because no information about
the group structures of G and G’ can be gained from this.

Ex. Let @:Gy = G, be a homomorphism of G4 into G,. Show that If G4 is
abelian and ¢ is onto then G, must be abelian. However, if @ is not onto

then G, need not be abelian.

To show G, is abelian we must show given any a,, b, € G, that
azbz == bzaz.

Since ¢ is onto, we know there is at least one a; € G and at least one

b1 € Gl such that ¢(a1) - az and ¢(b1) == bz.



Since (71 is abelian a;b; = bya;. So we know:
ab, = ¢p(a)p(by) = p(aby) = ¢(bray)
= ¢(b)p(a,) = bya,

Thus, G, is abelian.

Notice that if ¢ is not onto then we can have the trivial homomorphism:
¢:Zg - S3, ¢(k) = py = identity.

Thus G; = Zg is abelian but G, = S5 is non-abelian.

Ex. Let 7 € Z. Consider two mappings from Z, + to Z,+:
¢1:Z > Z; p;(n) =rnforalln € Z
¢,:Z > Z; p,(n) =rn+ 1foralln € Z.

Show that ¢4 is a homomorphism but that ¢, is not.

pm+n)=r(m+n)=rm+rn=¢,(m) + ¢p,(n)

so ¢4 is a homomorphism.

¢, (m+n)=rtm+n)+1=rm+rn+1
¢, (m)+p,(n)=rm+1+m+1=rm+rn+ 2.

Thus ¢p,(m +n) = ¢p,(m) + ¢p,(n).

So ¢, is not a homomorphism.



Ex. Let¢:GL(2,R) - R* by ¢p(A) = detA. Show ¢ isa homomorphism.

ForA,B € GL(2,R),
¢(AB) = det(AB) = (detA)(detB) = ¢p(A)p(B).
Note: GL(2,R) is non-abelian and R is abelian. So you can have a

homomorphism from a non-abelian group onto an abelian group.

Ex. Let F be the group of all real valued functions on R under addition.

Show ¢: F = R by ¢(f) = f(3) is a homomorphism.

d(f+9)=F+9B)=(f13))+(g3)) = o(f) + d(9).

Ex. Let S,, be the symmetric group on 1 letters.
Let ¢: S,, = Z, be defined by ¢p(c) = 0 if 0 is an even permutation
= 1if o is an odd permutation.

Show ¢ is a homomorphism.

We must show ¢(a1) = (p(0) + ¢(1)) (mod 2) forallo, T € S,,.
There are 4 cases:

1) o even and T even
2) 0 odd and T even
3) 0 even and T odd
4) 0 odd and T odd



Case ¢(o1) d(a) + ¢(1)

1 0T is even 0 = 0+ 0

2 0T isodd 1 = 1+ 0

3 0T is odd 1 = 0+ 1

4 OT is even 0 = 1+ 1 =0mod 2.

Note: ¢ is not 1-1, but it is onto.

Ex. ¢:7Z — Z,, where p(m) = m (mod n) is a homomorphism.

This follows from the fact that:

(r + s) (mod n) = [r (mod n) + s (mod n)] (mod n).

Note: This homomorphism is very useful and we will use it later.

Ex. Let F; be the group of infinitely differentiable functions on R under
addition and F, be the group of infinitely differentiable functions on R, such
that f(x) # 0 for any x € R under multiplication.

Let pq: Fy = Fy by 1 (f) = ().
Let ¢y: Fy — Fy by ¢y (f) = 270,

Show that ¢p; and ¢, are homomorphisms and determine if they are 1-1 or onto.

d1(f+9g) = +9)(x)=f'(x)+ 9 (x) =d:(f) + d1(9)-
d,(f +g) = 2(f(X)+g(x)) = 2f(x) . 29(x) — b, () - d,(9).



¢4 is not 1-1 because ¢ (f) = ¢1(g) = f'(x) = g'(x),
but that only implies that f(x) = g(x) + C, not f(x) = g(x).

¢ is onto because given any g(x) € F,, by the fundamental theorem

of Calculus, if £(x) = [ g(£)dt, then 1 (f) = f'(x) = g(x).

¢, is 1-1 because @, (f) = Pp,(g) = 2/ = 29%) — £ = g,

@, is not onto since ¢, (f) = 273 > 0. so, for example, g(x) = —11is
not in the image of ¢,.

Def: Let ACX,BCY, ¢p: X ->Y.
The image ¢p[A] of Ain Y under ¢ is {¢p(a)| a € A}.
@[ X] is the range of ¢.
The inverse image ¢ " 1[B] of Bin X is {x € X| ¢(x) € B}.

Theorem: Let ¢ be a homomorphism of a group G into a group G'.

1) If e is the identity element in G then ¢p(e) = €', the identity element of
Gl

2) Ifa € G, then p(a™1) = (¢p(a))7 L.

3) If H is a subgroup of G, then ¢p[H] is a subgroup of G'.

4) If K' is a subgroup of G' N ¢p[G], then ¢ "L[K'] is a subgroup of G.

So ¢ preserves the identity, inverses, and subgroups.



Proof 1,2 and 3:
1) ¢(a) = pae) = p(a)p(e). Multiply both sides by (¢(a)) .
e’ = ¢(e).

2) ' =¢(e) = p(aa™) = p(@)p(a™).

Multiply by (gb(a))_l ontheleft= (¢p(a)) ! = ¢p(a™t).

3) H<G. Let¢p(a),p(b) € p[H].
P(a)p(b) = ¢p(ab) € ¢p[H], so ¢p[H] is closed under

multiplication.
By2, p(a™) =(d(@)™" = (@) € ¢[H]
sop[H] < G'.

Notice that {e'} is a subgroup of G', so "1 (e") is a subgroup of G.

Def. Let ¢: G — G' be a homomorphism of groups.

The subgroup ¢~ 1(e’) = {x € G | ¢ (x) = e'} is the kernel of ¢, denoted

ker(¢).



Theorem: Let ¢p: G — G’ be a group homomorphism, and

let H = ker(¢). Let a € G. Then the set:

¢ Hp(a)] = {x € G| p(x) = p(a)}

is the left coset aH of H, and is also the right coset Ha of H.

So the two partitions of G into left cosets and into right cosets of H are the same.

Ex. Let F be the group of infinitely differentiable functions on IR under addition.
Let p: F — F be the homomorphism ¢(f) = f'(x).

What is the kernel of ¢?

The identity element of F is the function f(x) = 0.

Soker(¢) ={f € Fl| ¢(f) = f'(x) = 0},
So ker(¢) = {f € F| f(x) = constant}.

Corollary: A group homomorphism ¢: G — G'is 1-1 if, and only if,

ker(¢) = {e}.

Proof: If kKer(¢) = {e} then by our theorem for every a € G, the elements

that get mapped to ¢p(a) is the coset a{e} = {a}. Thus ¢ is 1-1.

If ¢ is 1-1, we know ¢p(e) = e’ so e is the only element that gets

mapped to e’ and hence, ker(¢) = e.



So when we want to prove ¢: G — G'isan isomorphism:
Step 1: Show @ is a homomorphism.
Step 2: Show Ker(¢) = {e} (which implies ¢ is 1-1)

Step 3: Show ¢ is onto.

Our theorem shows that the kernel of a homomorphism is a subgroup whose left
cosets and right cosets coincide, gH = Hg forall g € G.

Def. A subgroup H of a group G is normal if its left and right cosets coincide,

i.,e.gH = Hg forall g € G.

Corollary: If ¢p: G = G’ is a group homomorphism, then ker(¢) is a

normal subgroup of G.

Notice also that for any abelian group G, any subgroup H is a normal subgroup.

Ex. Suppose ¢: Z — Zq, is a homomorphism with ¢ (1) = 9.
Find a) ker(¢) andb) ¢(19).

a)p(1) =9
¢(2) =p(1+1) =) +¢(1) = (9+9) (mod 12) = 6
PB) =91 +2)=0(1)+¢p(2) =09 +6) (mod 12) =3
Pp(4)=¢p(1+3)=¢p(1)+¢dB)=(09+3) (Mmod12) =0
So 4 € ker(¢).



But notice:

p(4+4)=¢(4) +¢(4) =0
Pp(A+4+4)=0¢(4)+¢d(4)+¢(4) =0

etc, so any multiple of 4 is in ker(¢).

ker(¢) is a subgroup of Z, so it must be of the form nZ.

So ker(¢) = 47Z.

b) p(19) = ¢p(16+3) = ¢(16) + ¢p(3) =0+ 3 = 3.
Or we could say:
¢(19) = p(1+1+--+1) =19(¢(1))
= 19(9) (mod 12)
=171 (mod 12) = 3.

Ex. Find all homomorphisms from Z into Z5.

A homomorphism is completely defined by that it does to a generator of a

cyclic group. So we just need to find ¢p(1) .

There are three possibilities:

¢ (1) = 0 in which case ¢p(n) = 0,

¢ (1) = 1 in which case p(n) = n (mod 3), or
¢ (1) = 2 in which case p(n) = 2n (mod 3).

So there are only three different homomorphisms from Z to Zs5.



Ex. Show that A,,, the alternating group on n letters (i.e. the even

permutations in S;,) is a normal subgroup of S,,.

We saw earlier that
¢:S,, > Z, by p(a) = 0if gis even
= 1if o is odd

is @ homomorphism.

ker ¢ = A,,, thus A, is a normal subgroup of S;,.
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