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Group Homomorphisms 

Recall that an isomorphism of a group 𝐺 with a group 𝐺′ is a 1-1 function 

mapping 𝐺 onto 𝐺′ such that: 

𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. 

Isomorphic groups have the same group structure.  

 

Def.   A map 𝜙: 𝐺 → 𝐺′ is a group homomorphism if 

𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. 

An isomorphism is a type of homomorphism that is 1-1 and onto.  

 

For any groups 𝐺, 𝐺′ there is always at least one homomorphism, 𝜙:𝐺 → 𝐺′, 

given by 𝜙(𝑔) = 𝑒′ for all 𝑔 ∈ 𝐺. This is called the trivial homomorphism. 

However, this is not a very useful homomorphism because no information about 

the group structures of 𝐺 and 𝐺′ can be gained from this. 

 

Ex.     Let 𝜙:𝐺1 → 𝐺2 be a homomorphism of 𝐺1 into 𝐺2. Show that If 𝐺1 is   

                abelian and 𝜙 is onto then 𝐺2 must be abelian.  However, if 𝜙 is not onto  

        then 𝐺2 need not be abelian. 

 

 To show 𝐺2 is abelian we must show given any 𝑎2, 𝑏2 ∈ 𝐺2 that 

 𝑎2𝑏2 = 𝑏2𝑎2. 

 Since 𝜙 is onto, we know there is at least one 𝑎1 ∈ 𝐺1 and at least one  

          𝑏1 ∈ 𝐺1 such that 𝜙(𝑎1) = 𝑎2 and 𝜙(𝑏1) = 𝑏2. 
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 Since 𝐺1 is abelian 𝑎1𝑏1 = 𝑏1𝑎1. So we know: 

 𝑎2𝑏2 = 𝜙(𝑎1)𝜙(𝑏1) = 𝜙(𝑎1𝑏1) = 𝜙(𝑏1𝑎1) 

                     = 𝜙(𝑏1)𝜙(𝑎1) = 𝑏2𝑎2 

 Thus, 𝐺2 is abelian.  

 

           Notice that if 𝜙 is not onto then we can have the trivial homomorphism: 

                             𝜙: ℤ6 → 𝑆3,    𝜙(𝑘) = 𝜌0 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦. 

            Thus 𝐺1 = ℤ6 is abelian but 𝐺2 = 𝑆3 is non-abelian. 

 

 

Ex.  Let 𝑟 ∈ ℤ.  Consider two mappings from ℤ,+  to  ℤ,+ : 

 𝜙1: ℤ → ℤ;  𝜙1(𝑛) = 𝑟𝑛 for all 𝑛 ∈ ℤ 

 𝜙2: ℤ → ℤ;  𝜙2(𝑛) = 𝑟𝑛 + 1 for all 𝑛 ∈ ℤ. 

        Show that 𝜙1is a homomorphism but that 𝜙2 is not.  

 

    𝜙1(𝑚 + 𝑛) = 𝑟(𝑚 + 𝑛) = 𝑟𝑚 + 𝑟𝑛 = 𝜙1(𝑚) + 𝜙1(𝑛) 

    so 𝜙1 is a homomorphism.  

 

     𝜙2(𝑚 + 𝑛) = 𝑟(𝑚 + 𝑛) + 1 = 𝑟𝑚 + 𝑟𝑛 + 1  

     𝜙2(𝑚) + 𝜙2(𝑛) = 𝑟𝑚 + 1 + 𝑟𝑛 + 1 = 𝑟𝑚 + 𝑟𝑛 + 2. 

    Thus  𝜙2(𝑚 + 𝑛) ≠ 𝜙2(𝑚) + 𝜙2(𝑛). 

      So 𝜙2 is not a homomorphism.  
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Ex.   Let 𝜙: 𝐺𝐿(2,ℝ) → ℝ∗ by 𝜙(𝐴) = 𝑑𝑒𝑡𝐴.  Show 𝜙 is a  homomorphism.    

 

                      For 𝐴, 𝐵 ∈ 𝐺𝐿(2, ℝ),   

 𝜙(𝐴𝐵) = 𝑑𝑒𝑡(𝐴𝐵) = (𝑑𝑒𝑡𝐴)(𝑑𝑒𝑡𝐵) = 𝜙(𝐴)𝜙(𝐵).  

Note:  𝐺𝐿(2,ℝ) is non-abelian and ℝ∗ is abelian. So you can have a  

             homomorphism from a non-abelian group onto an abelian group. 

 

 

Ex.   Let 𝐹 be the group of all real valued functions on ℝ under addition. 

      Show 𝜙: 𝐹 → ℝ by 𝜙(𝑓) = 𝑓(3) is a homomorphism. 

 

𝜙(𝑓 + 𝑔) = (𝑓 + 𝑔)(3) = (𝑓(3)) + (𝑔(3)) = 𝜙(𝑓) + 𝜙(𝑔). 

 

Ex.  Let 𝑆𝑛 be the symmetric group on 𝑛 letters. 

      Let 𝜙: 𝑆𝑛 → ℤ2 be defined by 𝜙(𝜎) = 0 if 𝜎 is an even permutation 

       = 1 if 𝜎 is an odd permutation. 

  Show 𝜙 is a homomorphism. 

 

We must show 𝜙(𝜎𝜏) = ( 𝜙(𝜎) +  𝜙(𝜏)) (𝑚𝑜𝑑 2)  for all 𝜎, 𝜏 ∈ 𝑆𝑛. 

There are 4 cases: 

1) 𝜎 even and 𝜏 even 

2) 𝜎 odd and 𝜏 even 

3) 𝜎 even and 𝜏 odd 

4) 𝜎 odd and 𝜏 odd 
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Case     𝜙(𝜎𝜏)  𝜙(𝜎) + 𝜙(𝜏) 

  1  𝜎𝜏 is even       0  =    0 +  0 

  2  𝜎𝜏 is odd       1  =    1 +  0 

  3  𝜎𝜏 is odd       1  =    0 +  1 

  4  𝜎𝜏 is even       0  =    1 +  1 = 0 𝑚𝑜𝑑 2. 

    Note:  𝜙 is not 1-1, but it is onto. 

 

Ex.    𝜙: ℤ → ℤ𝑛,  where 𝜙(𝑚) = 𝑚 (𝑚𝑜𝑑 𝑛) is a homomorphism. 

 

       This follows from the fact that:  

               (𝑟 + 𝑠) (𝑚𝑜𝑑 𝑛) = [𝑟 (𝑚𝑜𝑑 𝑛) + 𝑠 (𝑚𝑜𝑑 𝑛)]  (𝑚𝑜𝑑 𝑛). 

 

Note: This homomorphism is very useful and we will use it later. 

 

Ex.  Let 𝐹1 be the group of infinitely differentiable functions on ℝ  under  

       addition and 𝐹2 be the group of infinitely differentiable functions on ℝ, such 

        that 𝑓(𝑥) ≠ 0 for any 𝑥 ∈ ℝ under multiplication. 

        Let 𝜙1: 𝐹1 → 𝐹1 by 𝜙1(𝑓) = 𝑓′(𝑥). 

       Let 𝜙2: 𝐹1 → 𝐹2 by 𝜙1(𝑓) = 2𝑓(𝑥). 

         Show that 𝜙1 and 𝜙2 are homomorphisms and determine if they are 1-1 or onto. 

 

          𝜙1(𝑓 + 𝑔) = (𝑓 + 𝑔)′(𝑥) = 𝑓′(𝑥) + 𝑔′(𝑥) = 𝜙1(𝑓) + 𝜙1(𝑔). 

         𝜙2(𝑓 + 𝑔) = 2(𝑓(𝑥)+𝑔(𝑥)) = 2𝑓(𝑥) ∙ 2𝑔(𝑥) = 𝜙2(𝑓) ∙ 𝜙2(𝑔). 
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         𝜙1 is not 1-1 because 𝜙1(𝑓) = 𝜙1(𝑔) ⟹ 𝑓′(𝑥) = 𝑔′(𝑥), 

         but that only implies that 𝑓(𝑥) = 𝑔(𝑥) + 𝐶, not 𝑓(𝑥) = 𝑔(𝑥). 

          𝜙1 is onto because given any 𝑔(𝑥) ∈ 𝐹2, by the fundamental theorem 

            of Calculus, if 𝑓(𝑥) = ∫ 𝑔(𝑡)𝑑𝑡
𝑥

0
, then 𝜙1(𝑓) = 𝑓′(𝑥) = 𝑔(𝑥). 

 

           𝜙2 is 1-1 because 𝜙2(𝑓) = 𝜙2(𝑔) ⟹ 2𝑓(𝑥) = 2𝑔(𝑥) ⟹ 𝑓 = 𝑔. 

           𝜙2 is not onto since 𝜙1(𝑓) = 2𝑓(𝑥) > 0.  So, for example, 𝑔(𝑥) = −1 is  

             not in the image of 𝜙2. 

 

 

Def:   Let 𝐴 ⊆ 𝑋,𝐵 ⊆ 𝑌,   𝜙: 𝑋 → 𝑌. 

The image 𝜙[𝐴] of 𝐴 in 𝑌 under 𝜙 is {𝜙(𝑎)| 𝑎 ∈ 𝐴}. 

𝜙[𝑋] is the range of 𝜙.  

The inverse image 𝜙−1[𝐵] of 𝐵 in 𝑋 is {𝑥 ∈ 𝑋|  𝜙(𝑥) ∈ 𝐵}. 

 

Theorem: Let 𝜙 be a homomorphism of a group 𝐺 into a group 𝐺′. 

1) If 𝑒 is the identity element in 𝐺 then 𝜙(𝑒) = 𝑒′, the identity element of 

𝐺′. 

2) If 𝑎 ∈ 𝐺, then 𝜙(𝑎−1) = (𝜙(𝑎))−1. 

3) If 𝐻 is a subgroup of 𝐺, then 𝜙[𝐻] is a subgroup of 𝐺′. 

4) If 𝐾′ is a subgroup of 𝐺′ ∩ 𝜙[𝐺], then 𝜙−1[𝐾′] is a subgroup of 𝐺. 

So 𝜙 preserves the identity, inverses, and subgroups. 
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Proof 1,2 and 3:   

  1)  𝜙(𝑎) = 𝜙(𝑎𝑒) = 𝜙(𝑎)𝜙(𝑒).    Multiply both sides by (𝜙(𝑎))
−1
. 

             𝑒′ = 𝜙(𝑒). 

 

  2)  𝑒′ = 𝜙(𝑒) = 𝜙(𝑎𝑎−1) = 𝜙(𝑎)𝜙(𝑎−1).    

      Multiply by (𝜙(𝑎))
−1

 on the left ⟹   (𝜙(𝑎))−1 = 𝜙(𝑎−1). 

 

  3)  𝐻 ≤ 𝐺.  Let 𝜙(𝑎), 𝜙(𝑏) ∈ 𝜙[𝐻]. 

         𝜙(𝑎)𝜙(𝑏) = 𝜙(𝑎𝑏) ∈ 𝜙[𝐻], so 𝜙[𝐻] is closed under 

          multiplication.   

          By 2,   𝜙(𝑎−1) = (𝜙(𝑎))−1   ⟹     (𝜙(𝑎))−1 ∈ 𝜙[𝐻]     

         so 𝜙[𝐻] ≤ 𝐺′. 

 

 

        

Notice that {𝑒′} is a subgroup of 𝐺′, so 𝜙−1(𝑒′) is a subgroup of 𝐺. 

 

Def.   Let 𝜙: 𝐺 → 𝐺′ be a homomorphism of groups. 

The subgroup 𝜙−1(𝑒′) = {𝑥 ∈ 𝐺  𝜙(𝑥) = 𝑒′} is the kernel of 𝜙, denoted 

ker(𝜙). 
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Theorem:  Let 𝜙:𝐺 → 𝐺′ be a group homomorphism, and  

                 let 𝐻 = ker(𝜙). Let 𝑎 ∈ 𝐺. Then the set: 

𝜙−1[𝜙(𝑎)] = {𝑥 ∈ 𝐺| 𝜙(𝑥) = 𝜙(𝑎)} 

        is the left coset 𝑎𝐻 of 𝐻, and is also the right coset 𝐻𝑎 of 𝐻.  

 

So the two partitions of 𝐺 into left cosets and into right cosets of 𝐻 are the same. 

 

Ex.   Let 𝐹 be the group of infinitely differentiable functions on ℝ under addition.  

             Let 𝜙: 𝐹 → 𝐹 be the homomorphism 𝜙(𝑓) = 𝑓′(𝑥). 

       What is the kernel of 𝜙? 

 

 The identity element of 𝐹 is the function 𝑓(𝑥) = 0.  

So ker(𝜙) = {𝑓 ∈ 𝐹| 𝜙(𝑓) = 𝑓′(𝑥) = 0}, 

So ker(𝜙) = {𝑓 ∈ 𝐹| 𝑓(𝑥) = constant}. 

 

Corollary: A group homomorphism 𝜙:𝐺 → 𝐺′ is 1-1 if, and only if,  

                  ker(𝜙) = {𝑒}.          

 

Proof:   If ker(𝜙) = {𝑒} then by our theorem for every 𝑎 ∈ 𝐺, the elements  

     that get mapped to 𝜙(𝑎) is the coset 𝑎{𝑒} = {𝑎}. Thus 𝜙 is 1-1.  

 

    If 𝜙 is 1-1, we know 𝜙(𝑒) = 𝑒′ so 𝑒 is the only element that gets  

     mapped to 𝑒′ and hence, ker(𝜙) = 𝑒. 
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So when we want to prove 𝜙:𝐺 → 𝐺′ is an isomorphism: 

     Step 1:   Show 𝜙 is a homomorphism. 

     Step 2:   Show ker(𝜙) = {𝑒}  (which implies 𝜙 is 1-1) 

     Step 3:   Show 𝜙 is onto. 

   

Our theorem shows that the kernel of a homomorphism is a subgroup whose left 

cosets and right cosets coincide, 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺.  

 

Def.  A subgroup 𝐻 of a group 𝐺 is normal if its left and right cosets coincide, 

        i.e. 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺.  

 

Corollary:  If 𝜙:𝐺 → 𝐺′ is a group homomorphism, then ker(𝜙) is a  

         normal subgroup of 𝐺. 

 

Notice also that for any abelian group 𝐺, any subgroup 𝐻 is a normal subgroup.  

 

Ex.  Suppose 𝜙: ℤ → ℤ12 is a homomorphism with 𝜙(1) = 9. 

 Find  a) ker(𝜙)     and b) 𝜙(19).  

 

  a) 𝜙(1) = 9 

           𝜙(2) = 𝜙(1 + 1) = 𝜙(1) + 𝜙(1) = (9 + 9)  (𝑚𝑜𝑑 12) = 6 

    𝜙(3) = 𝜙(1 + 2) = 𝜙(1) + 𝜙(2) = (9 + 6)  (𝑚𝑜𝑑 12) = 3 

    𝜙(4) = 𝜙(1 + 3) = 𝜙(1) + 𝜙(3) = (9 + 3)  (𝑚𝑜𝑑 12) = 0 

    So 4 ∈ ker(𝜙). 
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 But notice: 

  𝜙(4 + 4) = 𝜙(4) + 𝜙(4) = 0 

 𝜙(4 + 4 + 4) = 𝜙(4) + 𝜙(4) + 𝜙(4) = 0 

  etc, so any multiple of 4 is in ker(𝜙). 

              ker(𝜙) is a subgroup of ℤ, so it must be of the form 𝑛ℤ. 

  So ker(𝜙) = 4ℤ. 

 

 b) 𝜙(19) =  𝜙(16 + 3) =  𝜙(16) +  𝜙(3) = 0 + 3 = 3.     

               Or we could say: 

                  𝜙(19) = 𝜙(1 + 1 +⋯+ 1) = 19(𝜙(1)) 

                             = 19(9)  (𝑚𝑜𝑑 12) 

                             = 171   (𝑚𝑜𝑑 12) = 3. 

 

 

Ex.  Find all homomorphisms from ℤ into ℤ3.  

 

     A homomorphism is completely defined by that it does to a  generator of a  

       cyclic group. So we just need to find 𝜙(1) .   

 

 There are three possibilities: 

 𝜙(1) = 0 in which case 𝜙(𝑛) = 0,  

𝜙(1) = 1 in which case 𝜙(𝑛) = 𝑛  (𝑚𝑜𝑑 3), or 

𝜙(1) = 2 in which case 𝜙(𝑛) = 2𝑛  (𝑚𝑜𝑑 3). 

So there are only three different homomorphisms from ℤ to ℤ3. 
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Ex.  Show that 𝐴𝑛, the alternating group on 𝑛 letters (i.e. the even  

            permutations in 𝑆𝑛) is a normal subgroup of 𝑆𝑛.  

 

 We saw earlier that 

 𝜙: 𝑆𝑛 → ℤ2 by 𝜙(𝜎) = 0 if 𝜎 is even 

        = 1 if 𝜎 is odd 

is a homomorphism. 

ker𝜙 = 𝐴𝑛, thus 𝐴𝑛 is a normal subgroup of 𝑆𝑛. 

  


