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Orbits, Cycles, and the Alternating Groups  

 

Def.   Let 𝜎 be a permutation of a set 𝐴. The equivalence classes in 𝐴 determined 

by 𝑎~𝑏 if and only if 𝑏 = 𝜎𝑛(𝑎), for some 𝑛 ∈ ℤ,  are called the orbits of 𝜎.   

 

Ex.    Find the orbits of the permutation: 

 𝜎 = (
1 2 3 4 5 6 7 8
7 5 6 1 2 8 4 3

). 

 

Let’s start with 1 and follow where it goes under powers of 𝜎: 

𝜎(1) = 7,   𝜎2(1) = 𝜎(7) = 4,    𝜎3(1) = 𝜎(4) = 1. 

1 goes to 7, which goes to 4, which goes back to 1. We denote this by (1, 7, 4).  

 

Now go to 2 and see where 𝜎 sends it: 

𝜎(2) = 5,    𝜎2(2) = 𝜎(5) = 2. 

So 2 goes to 5, which goes back to 2. We denote this by (2,5).  

 

Now go to 3: 

𝜎(3) = 6, 𝜎2(3) = 𝜎(6) = 8,      𝜎3(3) = 𝜎(8) = 3.  

So 3 goes to 6, which goes to 8, which goes back to 3. We denote this by 

(3, 6, 8).  

 

Notice that we already know what 𝜎 does to 4 (and 5 − 8). For example, 

𝜎 sends 4 into 1, into 7, into 4. That’s already captured in (1, 7, 4).  

So 𝜎 has 3 orbits: 

(1, 7, 4),   (2, 5),   (3, 6, 8). 
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Def.   A permutation 𝜎 ∈ 𝑆𝑛 is a cycle if it has at most one orbit containing more  

                than one element. The length of a cycle is the number of elements in its   

                largest orbit.  

 

Ex.    The permutation (
1 2 3 4 5
4 5 3 2 1

) is a cycle because its orbits are  

          (1, 4, 2, 5) and (3).  

 

Let’s go back to the first example of the permutation:  

𝜎 = (
1 2 3 4 5 6 7 8
7 5 6 1 2 8 4 3

) 

with orbits: (1, 7, 4),   (2, 5),   (3, 6, 8).  

 

We can associate to each orbit a permutation that is a cycle: 

(1, 7, 4) = (
1 2 3 4 5 6 7 8
7 2 3 1 5 6 4 8

) 

  (2, 5)   = (
1 2 3 4 5 6 7 8
1 5 3 4 2 6 7 8

) 

(3, 6, 8) = (
1 2 3 4 5 6 7 8
1 2 6 4 5 8 7 3

) 

and: 

𝜎 = (
1 2 3 4 5 6 7 8
7 5 6 1 2 8 4 3

) = (1, 7,4)(2, 5)(3, 6, 8). 

 

That is, we can write any 𝜎 ∈ 𝑆𝐴 as a product of disjoint cycles (i.e. any integer is 

moved by only one cycle). 
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Since the cycles are disjoint, it also doesn’t matter which order we multiply them 

in. For example, 

(1, 7,4)(2, 5)(3, 6, 8) = (2, 5)(3, 6, 8)(1, 7,4). 

However, even though multiplication of disjoint cycles is commutative, 

multiplication of general permutations is not.  

 

Ex.   Write (
1 2 3 4 5 6
5 6 1 4 3 2

) as a product of disjoint cycles. 

 

 Notice 1 → 5 → 3 → 1 so (1, 5, 3) is one cycle. 

   2 → 6 → 2 so (2, 6) is another cycle. 

Thus  (
1 2 3 4 5 6
5 6 1 4 3 2

) = (1, 5, 3)(2, 6).  

 

Note: we also could have written (2, 6)(1, 5, 3).  

Also, since (1, 5, 3) = (5, 3, 1) we could have written (5, 3, 1)(2, 6). 

 

Ex.   Find (1, 3, 6, 5)(2, 1, 4, 6) in 𝑆6 and write it as a product of disjoint cycles.     
  

 

(
1 2 3 4 5 6
3 2 6 4 1 5

) (
1 2 3 4 5 6
4 1 3 6 5 2

) 

= (
1 2 3 4 5 6
4 3 6 5 1 2

) 

1 → 4 → 5 → 1           (1, 4, 5) 

2 → 3 → 6 → 2           (2, 3, 6)   

So, (1, 3, 6, 5)(2, 1, 4, 6) = (
1 2 3 4 5 6
4 3 6 5 1 2

) = (1, 4, 5)(2, 3, 6). 
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Notice that (1, 3, 6, 5)(2, 1, 4, 6) ≠ (2, 1, 4, 6)(1, 3, 6, 5) since: 

(2, 1, 4, 6)(1, 3, 6, 5) = (
1 2 3 4 5 6
4 1 3 6 5 2

) (
1 2 3 4 5 6
3 2 6 4 1 5

) 

  = (
1 2 3 4 5 6
3 1 2 6 4 5

). 

Now write this as a product of disjoint cycles: 

1 → 3 → 2 → 1           (1, 3, 2) 

4 → 6 → 5 → 4           (4, 6, 5)   

So (
1 2 3 4 5 6
3 1 2 6 4 5

) = (2, 1, 4, 6)(1, 3, 6, 5) = (1, 3, 2)(4, 6, 5)   

 

Def.  A cycle of length 2 is a transposition.  

 

Thus, a transposition leaves all elements but two fixed and switches the two 

unfixed elements. It can be shown through a calculation that any cycle can be 

written as a product of transpositions. That is: 

(𝑎1, 𝑎2, 𝑎3 , … , 𝑎𝑛) =  (𝑎1, 𝑎𝑛)(𝑎1, 𝑎𝑛−1)(𝑎1, 𝑎𝑛−2) … (𝑎1, 𝑎3)(𝑎1, 𝑎2)  

 

Ex.  Write the cycle (1, 3, 4, 6) in 𝑆6 as a product of transpositions.  

 

(𝑎1, 𝑎2, 𝑎3 , 𝑎4) = (𝑎1, 𝑎4)(𝑎1, 𝑎3)(𝑎1, 𝑎2) 

So, (1, 3, 4, 6) = (1, 6)(1, 4)(1,3). Let’s show that this works: 

(1, 3) = (
1 2 3 4 5 6
3 2 1 4 5 6

) 

(1, 4) = (
1 2 3 4 5 6
4 2 3 1 5 6

) 

(1, 6) = (
1 2 3 4 5 6
6 2 3 4 5 1

) 



5 
 

          (1, 4)(1, 3) = (
1 2 3 4 5 6
4 2 3 1 5 6

) (
1 2 3 4 5 6
3 2 1 4 5 6

) 

                                     = (
1 2 3 4 5 6
3 2 4 1 5 6

) 

(1, 6)(1, 4)(1, 3) = (
1 2 3 4 5 6
6 2 3 4 5 1

) (
1 2 3 4 5 6
3 2 4 1 5 6

) 

                                     = (
1 2 3 4 5 6
3 2 4 6 5 1

) = (1, 3, 4, 6). 

 

Notice that the identity permutation is the square of any transposition.  In 

particular,  𝑖 = (1,2)(2,1).    

 

     The decomposition of a permutation into a product of transpositions may not 

be disjoint and is not unique (we could always insert (1,2)(2,1) into any 

decomposition). However, any decomposition of a permutation into 

transpositions either always has an even number of transpositions or always has 

an odd number. For example, if a permutation can be written as a product of an 

even number of transpositions then any other representation of that permutation 

as a product of transpositions will also have an even number.  

 

Def.   A permutation of a finite set is called even or odd according to 

 whether it can be expressed as a product of an even number of 

 transpositions or the product of an odd number of transpositions.   

 

Ex.  The identity permutation in 𝑆𝑛 is even since 𝑖 = (1, 2)(2, 1).  

      If 𝑛 = 1, we define 𝑖 to be even. 
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Ex.    Write  (
1 2 3 4 5 6
5 6 1 4 3 2

) as a product of transpositions.  

 

           We saw in an earlier example that: 

 (
1 2 3 4 5 6
5 6 1 4 3 2

) = (1, 5, 3)(2, 6).  

 

(1, 5, 3) can be factored into transpositions as: 

(1, 5, 3) = (1,3)(1,5). 

(𝑎1, 𝑎2, 𝑎3 ) = (𝑎1, 𝑎3 )(𝑎1, 𝑎2) 

so (
1 2 3 4 5 6
5 6 1 4 3 2

) = (1, 3)(1, 5)(2, 6).                                

This permutation is odd because it can be factored into three transpositions. 

 

Let 𝐴𝑛 be the set of even permutations and 𝐵𝑛 be the set of odd permutations in 

𝑆𝑛.  𝐴𝑛 and 𝐵𝑛 have the same number of elements ( 
𝑛!

2
)  because: 

𝑓: 𝐴𝑛 → 𝐵𝑛 by 𝑓(𝜎) = (1, 2)𝜎 is 1-1 and onto.  

 

Notice that the product of two even permutations is even (because they each 

factor into an even number of transpositions so the product does as well). 

So 𝐴𝑛 is closed under multiplication. 

The identity permutation is also even and so is in 𝐴𝑛 (assuming 𝑛 ≥ 2). 

And if 𝜎 ∈ 𝐴𝑛,  then 𝜎−1, which reverses the permutation 𝜎, is also even. 

Thus, 𝐴𝑛 is a subgroup of 𝑆𝑛 of order 
𝑛!

2
  if 𝑛 ≥ 2.  

Def.   The subgroup of 𝑆𝑛 containing all of the even permutations, denoted 𝐴𝑛,   
is called the alternating group. 


