Permutation Groups
Def. A permutation of a set A is a function ¢p: A = A that’s 1-1 and onto

We can think of a permutation as a rearrangement of the elements of A.

Ex. Let A = {1, 2, 3,4, 5}. Examples of permutations:
$1({1,2,3,4,5}) = {4,3,1,2,5}
¢2 ({1121 3: 41 5}) - {5; 2: 3: 1; 4’}

b1 b2
1-4 1-5
2-3 22
3-1 3-3
4 - 2 4-1
5-5 5-4

We can form a new permutation by taking the composition of the above
permutations: ¢, © ¢, ({1,2,3,4,5}). This is permutation multiplication.

b2 ° Py i.e. ¢z ° Pq

1-4-1 1-1
2->3-3 2-3
3->1-5 3-5
4->2-2 4 - 2

5-5-14 5-4



We can write ¢ and ¢, as:

t=(4 31 2 )
b2=(5 3 3 1 1)

12 3 4 51 2 3 4 5
Then ¢ o 1= ( 2 3 1 4)(4 3 1 2 5)
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Theorem: Let A be a nonempty set, and let S4 be the set of permutations of A.
Then Sy is a group under permutation multiplication.

Proof:

0) Sy is clearly closed under permutation multiplication.

1) Permutation multiplication is just a composition of functions and
composition of functions is associative so this multiplication is as well.

2) The permutation i(a) = a forall a € A acts as an identity.

3) For any permutation o, o1 is just the permutation o in the opposite
direction that reverses what 0 does.

12345)
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then0'_1=(é i 3 i g)thus,a_lo og=iandoog ! =i.

For example, if 0 = (

Thus S, is a group.

We will generally be concerned with S4 where A is a finite set, but that doesn’t
have to be the case.



Def. Let A = {1, 2, ..., n}. The group of all permutations of 4 is called the
symmetric group on n letters and is denoted §,,.
Note that the number of permutations on n objects is n!

Thus, |S,| = n!

Ex. Let’s examine S3.

1S3 = 3! = 6.

Letpo=(]1L ; g) “FG é 2)
n=(z 5 1) =3 3 1)
=3 1 o) = 1 3)

It's easy (but cumbersome) to check the following multiplication table for S3 (by
taking compositions of these permutations):

Po P1 P2 251 | o2} U3
Po Po P1 P2 Uy 2% U3
P1 P1 P2 Po Uz Uy 2%,
P2 P2 Po P1 Uz Us U1
251 Uy Uz U3 Po P1 P2
U Uz Uz M1 P2 Po P1
U3 U3 Hq U2 P1 P2 Po

Notice that S5 is not abelian (e.g. p1 41 = Uz but U101 = Uy). In fact, it’s the
smallest possible non-abelian group.



There is a natural correspondence between the elements of S3 and the ways in
which 2 copies of an equilateral triangle with vertices 1, 2, 3 can be placed. S5 is
also called D, the 3™ dihedral group (symmetries of an equilateral triangle).
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an angle bisector.
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D, is the 4™ dihedral group which is the set of permutations of the vertices of a
square corresponding to the symmetries of a square. This is called the octic

group.

Rotations Flips
=1 2 3 m=(; 13 3
=z 5 1 1) =4 3 2 )
=3 4 1 2 5=(3 2 1 1)
=3 1 2 3) ==(1 4 3 2)



4 3 2 1
P2
—
1 2 3 4
4 3 1
H2
1 2 4
Multiplication table for Dy :
Po P1 P2 P3 /451 |27 01 02
Po Po P1 P2 P3 M1 M2 61 P!
P1 P1 P2 P3 Po 1 4y M2 H1
P2 P2 P3 Po P1 K2 H1 P! 01
P3 P3P0 P11 P2 O 0 M1 W
B | M1 02 Mz 01 po P2 Pz P1
B2 | Pz 01 W O P2 Po P11 P3
01 01 H1 P} M2 P1 P3 Po P2
82 P! H2 61 H1 P3 P1 P2 Po

D, is non-abelian.

Ex. Consider the following permutations in Sg:

o=l

r=(;

Calculate o1~

2

2 3 4
3 2 6
2 3 4
3 1 4
and g ©°.
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First calculate T~ 1:
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Def. The orbit of @ under o is the set {o"(a)| n € Z}.

Ex. Find the orbit of 5 under o for the previous example.

a(5) =1, d’2(5)=0(1) =4, 0¢3(5) =04 =6,
d*(5) = 0(6) = 5.

Orbit(5) = {5,1, 4, 6}.
Ex. Find the number of elements in the set {o € S5| 0(2) = 5}.
1 2 3 4 5 .
(a 5 b d) The number of elements is the same as the

number of elements of S, so the number of elements is 4! = 24.

Ex. Show that Sg is non-abelian by finding 2 permutations that don't commute.

4 =G 545 1)
AR =G 1549
2 =545 DG 15y 3
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Cayley’s Theorem

Def. Let f: A = B be afunction and let H be a subset of A. The image

of H under f is {f (h)| h € H} and is denoted by f[H].

Lemma: Let G and G’ be groups and let ¢p: G — G’ be a one to one

function such that ¢ (xy) = ¢p(x)p(y) forallx,y € G. Then ¢p[G]
is a subgroup of G’ and ¢ is an isomorphism of G with ¢p[G].

<G.

Proof: We need to check the following two conditions for ¢[G]

1) We need to show ¢[G] is closed under the multiplication in G'.

Let x',y' € ¢[G].
By definition there exist X,y € G such that ¢(x) = x’ and

¢(y) =y'. Byhypothesis p(xy) = p(x)Pp(y) = x"y".
Thus x'y' € ¢[G], so p[G] is closed under the multiplication in G'.

2) We need to show if X' € ¢[G], then so is its inverse.
Assume x' = ¢(x). Notice that:

e'p(e) = Pp(ee) = p(e)p(e) = ¢(e) =¢".

Thus we have:
e’ =¢(e) = plxx™) =p()p(x™") =x'dp(x ) sop(x™)is
theinverseof x" and (x' )71 = ¢p(x71) € ¢[G].

Thus, ¢ (G) is a subgroup of G'.

By definition ¢ is an isomorphism of G with ¢[G].



This lemma is used to prove:

Cayley’s Theorem: Every group is isomorphic to a group of permutations.

Proof: Given a group G we will finda 1-1 map ¢: G = S, where S;; is the
group of permutations of G, such that ¢ (xy) = ¢p(x)¢p(y) forallx,y € G.
Then by our lemma G will be isomorphicto ¢[G] < S¢.

To begin with, notice that for any fixed x € G
O0,.:G = G by
g —xg
Isa 1-1 map of G onto G, and hence g, is a permutation of G.
To see that 0, is 1-1 notice that:
0x(91) = 0x(92)

Xg1 = X92

= g1 = g, by the left cancellation law.

To see that g, is onto, let y € G thenx ™1y € G and
ax(x7ty) = x(x 1)
= y_

Now we define ¢: G — S by:

d(x) = oy.
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To finish the proof we just need to show that ¢ is 1-1 and ¢ (xy) = P (x)p(y)
forallx,y € G.

To see that ¢ is 1-1 notice that:
¢(x) = o)
Oy = 0y, ie. 0yx(g) =0,(g) forallg €G.
In particular, this relationship holds for g = e, the identity element.
ox(e) = gy (e)
xe =ye = x =17y (cancellation law).

So ¢ is 1-1.

To see that p(xy) = Pp(x)p(y) forallx,y € G:
¢ (xy) = oyy = Oxy(g) = (xy)g forallg€ G
P(X)P(y) =oxo0, = 0y°0y(g9) = 0x(vg)
= x(yg) forallg € G.
Thus ¢ (xy) = P (x)P(y) forallx,y € G.

Thus by our lemma, G is isomorphicto ¢[G] < S;.
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Ex. If G = Z,, find the isomorphism ¢: G — S described in the previous
theorem.

Since G = Z,, the group operation is addition modulo 4, xy = x + y (mod 4):
Ox:Ly = Ly by
g = (x + g) (mod 4).
For example, if x = 2:
0,(0)=24+0=2
0,(1)=2+4+1=3
0,(2) =2+ 2(mod4)=0

0,(3) =2+ 3 (mod 4)= 1.

So 05 is the permutation:

%=, 3 0 1)

By our previous theorem:

¢:Zy = Sz, by $(x) = oy

) =0y = D) e@=a=()
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