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Subgroups 

 

Notation:   When it’s obvious that the group operation is addition (for example 

when 𝐺 = ℤ) we may write 𝑎 + 𝑏 instead of 𝑎 ∗ 𝑏. Otherwise, we’ll write 𝑎𝑏 

instead of 𝑎 ∗ 𝑏. 

We will also write: 

                     𝑎𝑛 = (𝑎)(𝑎)(𝑎) … (𝑎)       𝑛 times 

                   𝑎−1 = inverse of 𝑎 

                   𝑎−𝑛 = (𝑎−1)(𝑎−1) … (𝑎−1)    𝑛 times 

                      𝑎0 = 𝑒. 

                       

Notice that 𝑎𝑚 ∙ 𝑎𝑛 = 𝑎𝑚+𝑛;    𝑚, 𝑛 ∈ ℤ. 

 

Ex.    𝑎−2𝑎4 = (𝑎−1)(𝑎−1)(𝑎)(𝑎)(𝑎)(𝑎) 

       = (𝑎−1)(𝑎−1𝑎)(𝑎)(𝑎)(𝑎) 

 = (𝑎−1)(𝑒)(𝑎)(𝑎)(𝑎) 

 = (𝑎−1𝑒)(𝑎)(𝑎)(𝑎) 

 = (𝑎−1)(𝑎)(𝑎)(𝑎) 

 = (𝑎−1𝑎)(𝑎)(𝑎) 

 = 𝑒(𝑎)(𝑎) 

  = 𝑎2.  

 

Def.  If 𝐺 is a group, then the order of 𝐺, written |𝐺|, is the number of 

 elements in 𝐺. 
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Def. If a subset 𝐻 of a group 𝐺 is closed under the binary operation of 𝐺 and if 𝐻 

is a group with that binary operation, then 𝐻 is a subgroup of 𝐺. We will write 

𝐻 ≤ 𝐺 or 𝐺 ≥ 𝐻 in that case.  

               𝐻 < 𝐺 or 𝐺 > 𝐻 will mean 𝐻 ≤ 𝐺 but 𝐻 ≠ 𝐺   

 

Ex.    (ℤ, +) ≤ (ℝ, +), in fact (ℤ, +) < (ℝ, +), 

 since ℤ ⊊ ℝ and ℤ and ℝ are both groups under +. 

 

Ex. (ℚ+, +) is not a subgroup of (ℝ, +) even though ℚ+ ⊆ ℝ. 

 This is because ℚ+ is a group under ∙ not + (under +, ℚ+doesn’t  

 contain inverses for all of its elements). 

 

Def.  If 𝐺 is a group, then the subgroup consisting of 𝐺 itself is called the 

         improper subgroup of 𝑮. All the other subgroups are proper subgroups. 

         The subgroup {𝑒} is called the trivial subgroup of 𝑮. All other subgroups are  

          called nontrivial.  

 

Ex.  Let 𝐺 = ℝ𝑛 with vector addition as the binary operation. This is a group 

under +. Let 𝐻 be the set of vectors in ℝ𝑛 having 0 as the entry in the first 

component. Show 𝐻 is a subgroup of 𝐺. 

0) 𝐻 is closed under +: 

< 0, 𝑎2, 𝑎3, … , 𝑎𝑛 > +< 0, 𝑏2, 𝑏3, … , 𝑏𝑛 >   

                                                         = < 0, 𝑎2 + 𝑏2, … , 𝑎𝑛 + 𝑏𝑛 > ∈ 𝐻. 
                

1) + is associative on 𝐻 because vector addition is associative. 



3 
 

2) < 0, 0, … , 0 > = 𝑒 ∈ 𝐻. 

 

3)  If 𝑎 = < 0, 𝑎1, 𝑎2, … , 𝑎𝑛 > ∈ 𝐻 

Then −𝑎 = < 0, −𝑎1, −𝑎2, … , −𝑎𝑛 > ∈ 𝐻 

and 𝑎 + (−𝑎) = 𝑒.   

𝐻 ⊊ 𝐺 so 𝐻 is a proper subgroup of 𝐺. 

 

Ex.     (ℚ+, ∙) is a proper subgroup of (ℝ+, ∙). We saw earlier that both    

 (ℚ+, ∙) and (ℝ+, ∙) are groups under multiplication and ℚ+ ⊊ ℝ+. 

 

Ex. The roots of the equation 𝑥4 = 1 (called the 4th roots of unity) form an  

            abelian subgroup of ℂ∗ under multiplication. 

 The roots of 𝑥4 = 1 are 𝐻 = {1, 𝑖, −1, −𝑖}, where 𝑖2 = −1. 

 Let’s check that (𝐻, ∙) is a group. 

0) If 𝑎, 𝑏 ∈ 𝐻 then clearly 𝑎𝑏 ∈ 𝐻. 

 
1) Multiplication of complex numbers is associative and commutative. 

 

2) 1 is the identity element. 

 

3)  

element inverse product 

1 1 1∙1 = 1 

𝒊 - 𝑖 𝑖 ∙(- 𝑖)=−𝑖2 = 1 
-1 -1 (-1)∙(-1) = 1 

- 𝒊 𝑖 (−𝑖)(𝑖) = −𝑖2 = 1 
  

 It’s actually the case that the 𝑛𝑡ℎ roots of unity, 𝑛 ∈ ℤ+, form an abelian   

            subgroup of order 𝑛 of (ℂ∗, ∙). This group is sometimes called 𝑼𝒏. 
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Ex.  Another (abelian) group, 𝑉, of order 4 is called the Klein 4-Group 

       𝑉 = {𝑒, 𝑎, 𝑏, 𝑐}, and the multiplication is given by: 

∙ e a b c 

e e a b c 
a a e c b 
b b c e a 
c c b a e 

 

𝑉 is a group. 

0) The table shows that 𝑉 is closed under multiplication.  

1) One can check that the multiplication is associative by checking all the 

possible elements in 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐. 

2) 𝑒 is the identity element shown by the table. 

3) By the table we can see 𝑎−1 = 𝑎, 𝑏−1 = 𝑏 and 𝑐−1 = 𝑐. 

 

𝑉 can be thought of as reflections of the vertices of a square along the 𝑥-axis,  

𝑦-axis, and the origin. 

 2      1  𝑎 = reflection over 𝑥-axis 

      𝑏 = reflection over 𝑦-axis 

      𝑐 = reflection about the origin. 

 3      4 

 

𝑎: 1 ↔ 4 and 2 ↔ 3 

𝑏: 1 ↔ 2 and 3 ↔ 4 

𝑐: 1 ↔ 3 and 2 ↔ 4. 
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Multiplication is just the composition of these functions: 

   𝑎:     1 ↔ 4    𝑏:      1 ↔ 2 

  2 ↔ 3    2 ↔ 1 

  3 ↔ 2    3 ↔ 4 

  4 ↔ 1    4 ↔ 3 

 𝑏 ∙ 𝑎:  1 → 4 → 3     which is     1 → 3     the same as 𝑐. 

          2 → 3 → 4          2 → 4 

  3 → 2 → 1          3 → 1 

  4 → 1 → 2          4 → 2  

 

Ex. Let’s put the tables of (ℤ4, +) and (𝑉, ∙) next to each other:  

 

ℤ4      𝑉 

+ 0 1 2 3  ∙ e a b c 

0 0 1 2 3  e e a b c 

 1 1 2 3 0  a a e c b 

 2 2 3 0 1  b b c e a 

3 3 0 1 2  c c b a e 
 

What subgroups of (ℤ4, +) exist other than ℤ4 and {0}?  

Notice that 𝐻 = {0,2} is a subgroup of ℤ4 

0) 0 + 0 = 0,   0 + 2 = 2,   2 + 0 = 2,   2 + 2 = 4 mod 2 = 0.  

So, 𝐻 is closed under +. 

1) + is associative. 

2) 0 is the identity element . 

3) 2 is its own inverse so if 𝑎 ∈ 𝐻, then 𝑎−1 ∈ 𝐻. 
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Notice that:  

{0,1}, {0,3}, {1,2},{1,3}, {2,3}, {0, 1, 2}, {0, 2, 3}, {1, 2, 3} 

 are not subgroups of ℤ4 because in each case the sets are not closed 

          under addition.  

 For example: 

     {0,3}, 3 + 3 = 6 mod 4 = 2 ∉ {0,3} 

    {1,2} 1 + 2 = 3 ∉ {1, 2} etc. 

 

What subgroups of 𝑉 exist other than 𝑉 and {𝑒}?  

 

𝐻1 = {𝑒, 𝑎},   𝐻2 = {𝑒, 𝑏},   𝐻3 = {𝑒, 𝑐} are also subgroups. 

 

The multiplication table for 𝑉 shows that for each set 𝐻𝑖 , 𝑖 = 1, 2, 3 

0) 𝐻𝑖  is closed under  ∙ . 

1)  ∙  is associative. 

2) 𝑒 is the identity element. 

3) 𝐻𝑖  contains all of its inverses. 

 

We can diagram ℤ4 and its subgroups and 𝑉 and its subgroups by: 

  ℤ4      𝑉 

        

        {0,2}             {𝑒, 𝑎}       {𝑒, 𝑏}          {𝑒, 𝑐} 

 

 {0}      {𝑒} 
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Theorem: A nonempty subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if and only if 

1. 𝐻 is closed under the binary operation of 𝐺. 

2. For all 𝑎 ∈ 𝐻, 𝑎−1 ∈ 𝐻.  

 

Proof:  If 𝐻 ≤ 𝐺 then 1, 2 hold by the definition of a group. 

 

If 1, 2 hold we just need to know that the multiplication is associative in 𝐻 and 

that 𝑒 ∈ 𝐻.   

For any 𝑎, 𝑏, 𝑐 ∈ 𝐻, 𝑎, 𝑏, 𝑐 are also in 𝐺 so, (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐).  

Since 𝐻 is nonempty, closed under multiplication, and for all 𝑎 ∈ 𝐻, 𝑎−1 ∈ 𝐻, 

then 𝑎𝑎−1 = 𝑒 ∈ 𝐻. 

Hence 𝐻 ≤ 𝐺. 

 

 

 

Ex.    Let 𝐹 be the group of real valued functions whose domain is ℝ under  

                addition. The subset 𝐻 consisting of differentiable (or continuous) functions   

                 is a subgroup of 𝐹.  

 

1.  The sum of differentiable functions is differentiable. 

2. −𝑓(𝑥), the inverse of 𝑓(𝑥), is differentiable.   
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Ex. Let 𝐺 = 𝐺𝐿(𝑛, ℝ) of invertible 𝑛 × 𝑛 matrices (which means  

       if 𝐴 ∈  𝐺𝐿(𝑛, ℝ), det (𝐴) ≠ 0) with matrix multiplication. 

      Let 𝐻 = subset of 𝐺 where 𝐴 ∈ 𝐻 if det(𝐴) = 1.  Show 𝐻 ≤ 𝐺. 

 

 

1.  𝐴, 𝐵 ∈ 𝐻 then det(𝐴𝐵) = (det𝐴)(det𝐵) = (1)(1) = 1 

so 𝐻 is closed under matrix multiplication. 

 

2. If 𝐴 ∈ 𝐻 then det(𝐴−1) =
1

det𝐴
=

1

1
= 1. So 𝐴−1 ∈ 𝐻.        

 

 

 

Ex.    Let 𝐺 = ℤ, +.   Let 𝐻 = 5ℤ = {𝑥 = 5𝑛| 𝑛 ∈ ℤ}. 

        Show that 𝐻 is a subgroup of 𝐺 = ℤ.  

 

1. 𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 = 5𝑛,   𝑏 = 5𝑚,    𝑛, 𝑚 ∈  ℤ. 

𝑎 + 𝑏 = 5𝑛 + 5𝑚 = 5(𝑛 + 𝑚), 𝑛 + 𝑚 ∈ ℤ  

So 𝐻 is closed under +. 

 

2. 𝑎 ∈ 𝐻 ⇒ 𝑎 = 5𝑛, 𝑛 ∈ ℤ.  −𝑎 = 5(−𝑛), −𝑛 ∈ ℤ so −𝑎 ∈ 𝐻. 

Thus 𝐻 contains all of its inverses. 
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Cyclic Subgroups 

What’s the smallest subgroup 𝐻 of ℤ12, + that contains 3? 

 

For 𝐻 to be a subgroup of ℤ12 it needs to contain 0, the identity element of ℤ12. 
It also needs to be closed under addition so, 

3 + 3 = 6 ∈ 𝐻 

3 + 6 = 9 ∈ 𝐻 

and 9 + 3 = 0 ∈ 𝐻. 

Notice the inverse of 6 is 6 (i.e. 6 + 6 = 0 mod 12)  

and the inverse of 9 is 3 (i.e. 9 + 3 = 0 mod 12), 

So {0, 3, 6, 9} is the smallest subgroup of ℤ12 that contains 3. 

 

In general, if a subgroup 𝐻 ≤ 𝐺 contains an element 𝑎 then it must contain 
{𝑎𝑛, 𝑛 ∈ ℤ}. 

 

Theorem: Let 𝐺 be a group and let 𝑎 ∈ 𝐺. Then 𝐻 = {𝑎𝑛|  𝑛 ∈ ℤ} is a 

subgroup of 𝐺 and is the smallest subgroup of 𝐺 that contains 𝑎.  

 

Proof:    

1. Since 𝑎𝑟 ∙ 𝑎𝑠 = 𝑎𝑟+𝑠 for 𝑟, 𝑠 ∈ ℤ, 𝐻 is closed under multiplication.  

  

2.  If 𝑎𝑟 ∈ 𝐻 then 𝑎−𝑟 ∈ 𝐻 and 𝑎𝑟 ∙ 𝑎−𝑟 = 𝑒. So 𝐻 contains inverses. 

 

 Hence 𝐻 is a subgroup of 𝐺. 
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Notice that any subgroup of 𝐺 that contains 𝑎 must also contain all powers 

of 𝑎 and thus must contain 𝐻. Thus 𝐻 is the smallest subgroup of 𝐺 

containing 𝑎. 

 

Def. Let 𝐺 be a group and 𝑎 ∈ 𝐺. Then the subgroup 𝐻 = {𝑎𝑛| 𝑛 ∈ ℤ} of 𝐺 is   

              called the cyclic subgroup of 𝑮 generated by 𝒂, and denoted by < 𝑎 >. 

 

Def. An element 𝑎 of a group 𝐺 generates 𝐺 and is a generator for 𝑮 if  

         < 𝑎 > = 𝐺. A group 𝐺 is cyclic if there is some 𝑎 in 𝐺 that generates 𝐺. 

 

Ex.   ℤ is a cyclic group under + and 1 and −1 are both generators of ℤ. 

 

 

 

Ex.   ℤ4, + is cyclic and both 1 and 3 are generators, i.e. < 1 > = < 3 >= ℤ4.  

 

 

If  𝑎 = 1 then                                        If  𝑎 = 3 then 

𝑎1 = 1                                                                       𝑎1 = 3 

𝑎2 = 1 + 1 = 2                                                       𝑎2 = (3 + 3) (𝑚𝑜𝑑 4) = 2  

𝑎3 = 1 + 1 + 1 = 3                                               𝑎3 = (3 + 3 + 3)(𝑚𝑜𝑑 4) = 1 

𝑎4 = 1 + 1 + 1 + 1 = 4(𝑚𝑜𝑑 4) = 0              𝑎4 = (3 + 3 + 3 + 3)(𝑚𝑜𝑑 4) = 0.  
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Ex.   𝑉 = Klein 4-group is not cyclic because  

 𝑎2 = 𝑒, 𝑏2 = 𝑒, 𝑐2 = 𝑒 so < 𝑎 >, < 𝑏 >, < 𝑐 > generate subgroups of 𝑉

 of order 2 and |𝑉| = 4.  

 

 

Ex.   ℤ𝑛 is a cyclic group and 1 and 𝑛 − 1 are generators. There could be other  

             generators depending on what 𝑛 is.  For example, if 𝑛 = 8, then  

           1,3,5, and 7 are generators (any number relatively prime to 𝑛, i.e. a number  

           with no common factors with 𝑛 will be a generator). 

 

Ex. If 𝑎 = 3, find < 𝑎 > in ℤ, +.   

 

𝑎1 = 3                                                        𝑎0 = 0 

𝑎2 = 3 + 3 = 6                                      𝑎−1 = −3 

𝑎3 = 3 + 3 + 3 = 9                              𝑎−2 = −3 + (−3) = −6 

⋮                                                                    ⋮  

𝑎𝑛 = 3 + 3 + ⋯ + 3 = 3𝑛                  𝑎−𝑛 = −3 + (−3) + ⋯ + (−3) = −3𝑛.  

 

  

 So  < 𝑎 > =< 3 > = 3ℤ = {𝑛| 𝑛 = 3𝑚, 𝑚 ∈ ℤ}. 
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Ex. Find all elements in the cyclic subgroup 𝐻 of 𝐺𝐿(2, ℝ) (with matrix 

multiplication)  generated by 𝐴 = [
1 1
0 1

]. 

  

  𝐴 = [
1 1
0 1

] 

 𝐴2 = [
1 1
0 1

] [
1 1
0 1

] = [
1 2
0 1

] 

 𝐴3 = [
1 1
0 1

] [
1 2
0 1

] = [
1 3
0 1

] 

 ⋮ 

𝐴𝑛 = [
1 𝑛
0 1

]. 

 

 If 𝐴 ∈ 𝐺𝐿(2, ℝ),  𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

 Then 𝐴−1 =
1

𝑑𝑒𝑡𝐴
[
   𝑎22 −𝑎12

−𝑎21    𝑎11
] so,        

 𝐴−1 = [
1 −1
0    1

] 

 𝐴−2 = [
1 −1
0    1

] [
1 −1
0    1

] = [
1 −2
0    1

] 

 ⋮ 

 𝐴−𝑛 = [
1 −𝑛
0    1

]  

 

         and 𝐴0 = [
1 0
0 1

]. 

          So 𝐻 = {𝐴 ∈ 𝐺𝐿(2, ℝ)⃒ 𝐴 = [
1 𝑛
0 1

] , 𝑛 ∈ ℤ}.  


