Groups

Def. Agroup (G,*) isaset G, and a binary operation *, such that the following
axioms hold:

0) G is closed under *

1) Foralla, b, c € G we have
(ax b)* c=ax(b*c) i.e. * isassociative

2) Thereis an element e € G such that
foralx EG, exx =x*xe = X.
e is called the identity element.

3) To each a € G there exists an elementa’ € G
suchthat a*xa’' =a' *a =e.

a’ is called the inverse of a.

Def. A group G is abelian if its binary operation is commutative.

Ex. Show that (Z, +) is a group (so are (Q, +), (R, +), and (C, +)).

0) Z is closed under + .

1) Addition in Z is associative.

2) 0 € Z is the identity element.

3) Foranya € Z, —a € Z is the inverse of a.

(Z,+) is also an abelian group because + is commutative.



Ex. Show that (Z*, +) is not a group.

0) Z™ is closed under +.

1) + is associative.

2) There is no identity element (0 & Z™).

3) No element of Z* has aninverse (—a & Z*) in Z"*.

So (Z*, +) fails axioms 2 and 3.

Ex. QF,RT, Q*, R* and C* are all abelian groups under multiplication.

0) Each set is closed under multiplication.
1) Multiplication is associative (and commutative).

2) 1is the identity element.
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3) If a is in any of the above sets, so is oy the multiplicative inverse.

Ex. Show the set F of all real valued functions on R is an abelian group under

addition.

0) F is closed under addition.

1) Addition of functions is associative (and commutative).

2) f(x) = 0is the identity element.

3) If f(x) € F then —f(x) € F and —f (x) is the inverse of f (x).



Ex. Show the set My, (IR) of all m X n matrices with real entries is an
abelian group under addition, but not under multiplication .

0) M, (R) is closed under addition.
1) Matrix addition is associative (and commutative).
2) The matrix with all entries equal to zero is the identity element.

3) IfA € My, (R) then —A € M,,,,(R) and —A + A = O is the

identity element .

M,y (R) is not a group under multiplication because, in general, you can’t
multiply an m X n matrix by an m X n matrix (you can multiply m X n and
n X q matrices). M, (R) = {nxn matrices with real entries} is not a group
under multiplication because not every n X n matrix has an inverse.

EX. The set of all invertible n X n matrices, GL(n, R) = the general linear

group of degree N, is a (non-abelian) group under matrix multiplication.

0) To show GL(n, R) is closed under multiplication, we must show that if
A,B € GL(n,R), i.e. A and B are invertible then AB is invertible.
A,B € GL(n,R) => A™1, B~ exist. Now notice that:

(AB)(B™ A1) = ABB™ DA ' =A4AIA 1 =441 =1
(B~1A"1)(AB) = B-X(A"'A)B = B~YIB = BB = I.
So, B"1A7 1 is the inverse of AB thus AB € GL(n, R).

1) Matrix multiplication is associative (but not commutative).

2) The matrix with 1s on the major diagonal and 0s elsewhere is the
identity element.

3) By the definition of GL(n, R), if A € GL(n, R) thensois A1,



a

Ex. Let * be definedon Q* bya x b =

Show (Q,*) is an abelian group.

b
0) ifa,b € Q* thena xb = % € Q*, so Q% is closed under *.

b b

1) (a*b)*c=%*c=—agc
bc abc
ax(bxc)=ax-=—

So, (a *b) xc = a * (b * c) and * is associative.

ab ba ) .
ax*xb =3 =3 = b * a so * is commutative.

2) Ifa € Q% and a is the identity element then:
a*xb=Db,forallb € QF.

Thus we have:
b
a*xb = % =b = a =3 € Q1 istheidentity element.

3 3
Notice: 3*a=?a=aand a*3=%=a

3) Ifa € QTand a' is the inverse of a then:
a *a’ = 3 (the identity element).

a(a') A
T—S = a _EEQ X
9 a(9)
— = — =
@ a 3a
9 9a
— %k —_ —
a @ 3a

9
So Z is the inverse of a.



Elementary Properties of Groups

Theorem (left and right cancellation laws): Let (G,*) be a group.

1) ifa*xb =a*cthenb = c.
2)Ifbxa =cx*athenb = c.

Proof of 1: Supposea * b = a * .
Since G is a group, a has aninverse a’ € G.
a'«*(a*xb)=a"*(axc)
By associativity we have:
(a'*a)*b=(a"*xa)*c
Since, by definition a’ * @ = e and a * a’ = e, we have:

exb=exc, orb=c.

Theorem: If (G,*) is a group and a, b € G then the equations

a *x = b and y * a = b have unique solutions x,y € G.

Proof: First we show there is at least one solution.
Ifweletx =a’' *xb (where a’ is the inverse of a),
Thena*(a'*b) = (a*xa') *b (by associativity)
=exh (since a’ is the inverse of a)
= b.

Sox =a' *bisasolutionto a *x x = b.



We show this solution is unique by assuming there are two solutions and showing
that they must be equal.

Let X4, X, be solutionssothat: a*x; =banda *x, = b.
Thus, a * X1 = ax*Xxsy.

But then X; = X, by the previous theorem (the cancellation law).

Theorem: In a group G, the identity element, e, is unique. Similarly, each

element a € G has a unique inverse.

Proof: Assume e, e, are both identity elements of G, so

ep*g=yg and e, xg =g Forallg €QG.

Thus we have: e1*g =ey*g.

By the right cancellation law e; = e,.

So, the identity element is unique.

Assume a has two inverses, a’, a’’ € G, then:
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axa'=a'*xa=e and axa’'=d’ ' *xa=e.

So axa =axa'

and a’ = a'’ by the left cancellation law.

So, a has a unigue inverse.



Corollary: (a * b)' = b" x a’.

Proof: (a*b)*(b'*xa’)=ax(bx*xb")=*a
—axexa
=axa

= e.

Similarly, we get (b' *a") * (a x b) = e.

How many different groups can there be with just two elements?

Let G = {e, a} with the following multiplication table:

* e a
e‘e a
a‘a

Since G isagroup a * a = e or a.

But a must also have an inverse element, so a * a@ = e, and there is only one
group with two elements.

* e a
e‘e a
a‘a e

It’s easy to check that * is also associative by using this table.



Ifwelet G = {0,1},i.e.e = 0,a = 1, and * be addition modulo 2, we can see
that G is essentially Z, with modulo 2 addition.

Now, suppose G is a group with 3 elements, G = {e, a, b}

* e a b
e‘e a b
a‘a
b b

To fill out the rest of the tableweneed:a *a, b* b, a*b, and b * a.

a * b must equal e, otherwise either a or b would equal e.

(e.g.a *x b = a implies b = e), which it can’t.

Similarly, b *x @ = e. So a, b are inverses of each other.

Nowa *a = bsincea *a = aimpliesa =e,anda*xa = e
implies a is its own inverse, but we just saw b is the unique inverse of a.

Similarly, b x b = a.

So we have:

* e

e‘e
a‘a
b b
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IfweletG ={0,1,2}ie. e=0, a=1, b =2 and * be addition



modulo 3, we see that the only group with 3 elements is essentially Z5.



