Field Extensions

Def. Afield E is an extension field of a field F if F is a subfield of E (F < E).

Ex.

R is an extension field of Q and C is an extension field of R and Q.

Kronecker’s Theorem: Let F be a field and let g(x) be a nonconstant

Ex.

polynomial in F[x]. Then there exists an extension field E of F and an
a € E such that g(a) = 0.

let F = Randlet g(x) = x%2 + 1. g(x) has no zeros in R and thus
is irreducible over R. < x2 4+ 1 > is a maximal ideal in R[x] so
R[x]/< x? + 1 > isafield.

We can view R as a subfield of R[x]/< x? + 1 > through the mapping:
p:R-> R[x]/<x?4+1> by @(t)=t+<x?+1>, t€R.

leta = x+<x?+1>€ R[x]/<x?*+1>,

then a2 +1=(x+<x?+1>)?+ (1+<x?+1>)
=(x*+D+<x*+1>
= 0.

Thus a is a zero of x2 + 1. So we can think of R[x]/< x% + 1 > as
an extension field of R, which has an element & where a? + 1 = 0.



Ex.

Let F = Q and consider f(x) = x* — 7x% + 10.
In Q[x], f(x) = (x? —2)(x? —5), where x> — 2 and x? — 5 are

irreducible over Q.

We can construct a field Q[x]/ < x? — 2 >, which can be thought
of as an extension field of Q, which has an element & such that
a? —2 =0 (justleta = x+< x%2 — 2 >).

We can also construct an extension field of Q, Q[x]/ < x? — 5 >,
which has an element & such that ? — 5 = 0.

Def. An element a of an extension field E of a field F is algebraic over F if

Ex.

Ex.

f(a) = 0 forsome f(x) = F[x]. If & is not algebraic over F, then « is
transcendental over F.

C is an extension field of Q. Since V3 is a zero of x2 — 3, V3 isan
algebraic element over Q. Since i is a zero of x?+1, iisalso
algebraic over Q.

Although it’s not that easy to prove, T and e are transcendental
numbers over Q.



Ex. Notice that 7T and e are transcendental over Q because there is no
polynomial with coefficients in Q (or Z) such that 7 or e is a solution to:

A x"+ ap_x" 1+ +a,=0; a; €Qforalli=1,..,n.

However, T and e are algebraic over R because misarootof x —m =0
and eisarootof x —e = 0.

So whether a number is algebraic or transcendental can depend on which
field you are taking it over.

Ex. Show /1 4 +/7 is algebraic over Q.

Let @ = v/ 1 + /7 then:

a?=1++7
a?—1=+7
(a? —1)2 =7

a*—2a’+1=7o0r a*—-2a%? -6=0.

So @ is a zero of x* — 2x% — 6 = 0 in Q[x] and « is algebraic over Q.

Theorem: Let E be an extension field of F, and @ € E, with a
algebraic over F. Then there is an irreducible polynomial
f(x) € F[x] suchthat f(a) = 0. f(x) isuniquely determined up
to a constant factor in F and is a polynomial of minimal degree = 1 in
F[x] having @ as a zero. If g(a) = 0 for g(x) € F[x], with
g(x) # 0, then f(x) divides g(x).



Ex. x2—2=0,3x?—-6=0,andx3 —2x = 0 all have V2 as a zero.
Notice that 3x2 — 6 = 3(x% — 2) and x3 — 2x = x(x? — 2).

x2 — 2 and 3x% — 6 areirreducible in Q[x] where x3 — 2x is not.

Def. Let E be an extension field of a field F, and let &« € E be algebraic over F.
The unique monic polynomial (coefficient of the highest poweris 1) p(x),
where p(a) = 0 and p(x) is irreducible over F, is the irreducible
polynomial for & over F and will be denoted irr (e, F). The degree of
irr(a, F) is the degree of & over F, denoted by deg(a, F).

Ex. Wesawthata =1+ /7 isazeroof x* — 2x? — 6 in Q[x].

x* — 2x2 — 6 is irreducible over Q by Eisenstein’s criterion with p = 2
since:

a, =1# 0 (mod 2), —2 =0 (mod 2)
—6=0(mod2) and —6 % 0 (mod(2?%)).
The leading coefficient is 1 so irr (\/Tﬁ Q) = x* — 2x?% — 6, and
deg (V1+V7),@) = 4

Ex. When we talk about the degree of an algebraic number, we must

specify which field we are talking about. For example, for & = \/§:
irr(v3,Q) =x2 -3 so deg(V3,Q) =2,
butirr(v3,R) = x —v3 so deg(V3,R)=1.



Ex. Findirr(a,Q) anddeg(a, Q) fora =3 + 1.

a’?=3+i
a?—3=i
(@?—3)? =i2=—1
a*—6a®+9=-1
a* —6a?+10 = 0.

So « satisfies x* — 6x2 + 10 = 0.

x* — 6x? + 10 = 0 isirreducible over Q by Eisenstein’s criterion
withp = 2since: a, =1 % 0 (mod 2), — 6 =0 (mod 2), and
10 = 0 (mod 2), But 10 Z 0 (mod 22). So:

irr(a,Q) = x*—6x2+10, deg(a,Q) = 4.

Def. Suppose « is algebraic over F then < irr(a, F) > is a maximal ideal of
F[x]. Therefore, F[x]/< irr(a, F) > is a field and is isomorphic to the

image ¢, [F[x]], where ¢, is the evaluation homomorphism. We call this

field F ().

Def. An extension field E of a field F is a simple extension of F if E = F(a)

forsomea € E.



Theorem: Let E be a simple extension F (&) of afield F, and let a be

Ex.

algebraic over F. Let the degree of irT(a, F) ben = 1. Then

every element y of E = F (&) can be uniquely expressed in
the form:

Yy =co+cia+ -+ cp_qa™ ! wherecjarein F.

f(x) = x? + x + 1inZy[x] is irreducible over Z, because it is
degree 2 and has no zero in Z, since:

f(0) =1and f(1) = 1(mod 2).

By Kronecker’s Theorem there exists an extension field E on Z,, which has
a zero of x + x + 1. By our previous theorem, elements of E = Z, (a)

are of the form:
a,a + ay where ag,aq €Z,.
So the elements of E = Z, () are:
0+0a=0 14+40a=1, 0+1la=a and 1+ a.

Thus E = Z, (@) is a finite field with 4 elements.

How do we add or multiply these elements? We need to use the fact that
a? + a + 1 = 0 to do this. In Z, we have:

at=—-—a—-1=a+1.

So, for example, if we want to multiply:

(@) (1l+a)=a+a’=a+a+1=1.



So let’s fill in the addition and multiplication tables for Z, («):

=+ 0 1 a 1+a 0 1 a 1+«
0 0 1 a 1+a 0 0 0 0 0
1 1 0 1+a a 1 0 1 a 1+«
a a 1+« 0 1 a 0 a 14+« 1
1+a 1+a a 1 0 1+4a O 1+« 1 a

Finally, let’s show that R[x]/ < x? + 1 >= C:

R(a) = R[x]/ < x? + 1 > where elements of R(a) are of the form:
ap, + a,a; ag,a, ER where a? = —1.
Weusuallycalla, i =+vV—1.

So we have:
R(a) = R[x]/<x?+1>={ay, + a;a| ag,a; ER, a? =-1}

={a+bi|la,beR, i=v-1}=C.



