Homomorphisms and Factor/Quotient Rings

Just as we discussed group homomorphisms and factor/quotient groups, there
are analogous notions for rings.

Recall that:
Def. Amap ¢ of aring R into aring R is a (ring) homomorphism if:
¢(a+b) = ¢p(a) + ¢(b) and
¢(ab) = ¢p(a)¢p(b) foralla,b € R.

We saw earlier that ¢p: Z — Z,, by ¢(m) = m (mod n) is aring
homomorphism.

Ex. Projection homomorphism: Let R, R, ..., R,, be rings for each i, the map:
mTi:Ry X Ry X .. X R, & R;
(1,1, e, ) =15

is a homomorphism. This homomorphism projects an element in
R{ X R, X ...X R,, ontoits i" component.

T; is a homomorphism because addition and multiplication in
Ri X R, X ... X R,, are defined componentwise. For example:

i ((r, 19, o, 1) + (51,82, 00, Sp)) = W;(ry + 51,15 + Sy, o0, T, + )
=T + S
= ﬂi(rl,rz, ---;rn) + T[i(Sl, S92, ...,Sn),

forany(ry, ..., 1), (S1, ..., S,) € Ry X .. X R,,.



Theorem: Let ¢ be a homomorphism of a ring R into a ring R'.
1. If 0 is the additive identity in R, then ¢»(0) = 0’ is the additive
identity in R'.
2. Ifa €R,then p(—a) = —¢(a).
3. IfSisasubring of R, then ¢[S] is a subring of R'.
4. 1fS"isasubring of R’ then ¢ "1[S'] is a subring of R.
5. If R has unity 1, then ¢p(1) is unity for p[R].

Proof: 1. and 2. follow from the theorem on pages 5-6 of the section called
Group Homomorphisms (which I‘ll refer to as the Group Homomorphism

theorem), since ¢ is a group homomorphism on (R, +).

For 3. and 4., by the Group Homomorphism theorem, @[S, +] is a subgroup of
R’ and ¢ ~1[S’, +'] is a subgroup of R. Thus we only need to show that ¢[S]
and ¢ "1[S'] are closed under multiplication.

3. If p(x1), d(xz) € P[S] then p(x1)p(x2) = P(x1x3) € P[S]

4. If x1,x, € p7[S'] then p(x1x3) = p(x)Pp(x;) €S’
s0 x1x, € 7L[S’].

For 5. Notice that :
¢(x) = $(1x) = p(1)p(x)
¢(x) = p(x1) = p(x)p (1)
So ¢ (1) is unity for p[R].



Def. Let ¢: R = R’ be a ring homomorphism. The subring
¢ 10'] = {r € R| ¢(r) = 0'} is the kernel of ¢, denoted ker(¢).

This Ker ¢ is the same as the kernel of the group homomorphism of
(R, +)into (R',+") given by ¢.

Ex. Let p:Z — Zy, by p(m) = m (mod 12). Find ker(¢).

ker(p) ={m €Z | m (mod 12) = 0}
={..—24,-12,0,12,24, ..} = 12Z

Ex. Consider the ring F = {constant functions from R — R} and the
evaluation homomorphism ¢,: F = R by ¢, (f) = f(2). Find ker(¢).

¢,(f) = 0= f(2) = 0. But f is a constant function so
ker(¢p) = {f(x) = 0}

Ex. Consider the subring S’ = {0,4,8} € Z;,. Using the homomorphism
¢(m) = m (mod 12), of Z onto Z;, , find ¢ ~1[S'].

¢~1(0) = 12Z,
¢ 1(4)={.—-20,-8,4,16,28,..} =4 + 127
¢~ 1(8) ={..—16,—4,8,20,32,..} = 8 + 12Z

= ¢_1{O;4)8} = {l _12; _81 _4; 01 41 8) 12 } = 41.



If R has unity 1, then ¢(1) is unity for ¢p[R], but not necessarily for R'.

Ex. Let ¢:Z = Z X Z by p(x) = (x,0). ¢ isa homomorphism and

¢ (1) = (1,0) which is unity for ¢[Z] = Z % {0}, but (1,1) is unity
for Z X Z.

Analogous to our theorem for kernels of group homomorphism we have:

Theorem: Let ¢: R = R’ be a ring homomorphism and let H = ker(¢).
leta € R.Then ¢ Y[¢p(a)] = a + H = H + a, where
a + H = H + a is the coset containing a of the
commutative additive group H, +.

Ex. Letp:Z — Zq, by p(m) = m (mod 12). Find ¢p~1[¢(28)] and
¢~ p(17)].

¢~ [p(28)] = ¢71(28 (mod 12)) = ¢p~1(4) = 4 + 12Z.
¢ Pp(17)] = ¢71(17 (mod 12)) = ¢p~1(5) = 5 + 12Z.

Corollary: A ring homomorphism ¢: R — R isa 1-1 map, if, and only if,

ker ¢ = {0}.



We can now develop the analogue to factor/quotient groups, i.e. factor/quotient
rings.

Theorem: Let ¢p: R = R’ be a ring homomorphism with kernel H. Then the
additive cosets of H form a ring R/H whose binary operations are
given by : The sum of the two cosets is defined by:

(a+H)+(b+H)=(a+b)+H.
and the product of the cosets is defined by:
(a+ H)(b+H) = (ab) +H.
Also, the map T: R/H — ¢[R] defined by:
t(a+ H) = ¢p[a]

is an isomorphism.

Ex. Llet¢:Z — Z, by p(m) = m (mod n), H = ker(¢p) = nZ.
By the previous theorem, Z /N7 is isomorphic to Z,, as a ring by:
t(a+{...,—3n,—-2n,—n,0,n,2n,3n,..}) =a

where0 <a<n-1.

Ex. Show that Zg/{0,4} is isomorphic to Z,.

Consider the homomorphism:
¢: Zg > Z, by p(m) = m (mod 4) where H = ker(¢) = {0,4}.

By the previous theorem Zg/H = 7Z,; which says Zg/{0,4} is isomorphic to
Z,.



Theorem: Let H be a subring of the ring R. Multiplication of additive cosets of
H is well defined by:

(a+H)b+H)=ab+H
if, and only if, ah € H and hb € H foralla,b € Rand h € H.

For groups in order for G /H to form a group we need H to be a normal
subgroup of G. The analogue for rings follows.

Def. An additive subgroup N of a ring R satisfying the properties:
aN € N and Nb € N foralla,b € R is an ideal.

Ex. nZisanideal in Z since nZ is a subgroup and because,

t(nm) = (nm)t = n(mt) € nZforall t € Z.

Ex. LetF be the ring of all functions f: R = R. Let C be the subring of F of all

constant functions. Is C an ideal of F'?

No! In order for C to be an ideal of I we would need:
frc€C, c-feCCforal f €Fandc € C.

But, in general f - C is not a constant function so C is not an ideal in F.

So not all subrings are ideals.



Ex. Let F be the ring of functions f: R — R. Let N be the subgroup of
functions f such that f(6) = 0.Is N anideal?

Yes! Notice thatif g(x) € F and f(x) € N, thenif:

h(x) = g(x)f (x) then h(6) = g(6)f(6) = g(6)(0) = 0.
Andif j(x) = f(x)g(x) then j(6) = f(6)g(6) = 0(g(6)) = 0.

so N is an ideal.

Ex. Show that {0,4} is an ideal in Zg.

a(0) = (0)a =0, foralla € Zg.
a(4) = (4)a=0or4 foralla € Zg.
So {0,4} is an ideal in Zg.

Ex. Show that S[x] € Z[x], where f € S[x] if

f(x) =apx™+ -+ a,x; i.e.ayg = O0isanideal in Z[x].

If g(x) € Z[x], then g(x)f(x) = f(x)g(x) and the constant term is 0.

So S[x] is an ideal in Z[x].



Ex. Show that S[x] € Z[x], where f € S[x] if
f(x) =apx™+ -+ a;x+ ay; a; € 2Zis anideal in Z[x].

If g(x) € Z[x], then g(x)f(x) = f(x)g(x) and the coefficients of the
product will be even because an even integer times any integer is even.

So S[x] is an ideal in Z[x].

Ex. Show that the subring S € M, (R) = 2 X 2 matrices over R, given by

S = {(8 8)| a € R} is not an ideal.

To see that S is a subring:
G O+C H-C3 D 66 D= )

((1) 8)(3 8)=(8 8) However,

(6 )G =07 Des

Corollary: Let N be an ideal of a ring R. Then the additive cosets on N
form aring R/N with the binary operations defined by:

(a+N)+(b+N)=(@+b)+ N and
(a+N)(b+N)=ab+N.



Def. Thering R/N is the factor ring (or quotient ring) of R by N.

Theorem: Let N be anideal of aring R.

Theny:R — R/N byy(x) = x + N is a ring homomorphism with
kernel equal to N.

Fundamental Homomorphism Theorem:

Let ¢p: R = R’ be a ring homomorphism with kernel N. Then ¢[R] is a
ring, and the map 7: R/N — ¢[R] givenby T(x + N) = ¢(x) isan
isomorphism. If T: R = R /N is the homomorphism given by

m(x) = x + N then for each x € R, we have ¢p(x) = T m(x).

b
R " ¢[R]
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Ex. Find all of the ideals N of Z;,. In each case compute Z1, /N, that s, find a
known ring that is isomorphic to it.

The ideals are subrings of Zq,, N such thataN € N and Na € N for all
a € Zq;.

The subgroups of Z4, are:

7., = {0,1,2, .. 11) 47, = {0,4,8)
27, = {0,2,4,6,8,10} 6Z,, = {0,6}
3212 = {0, 3, 6, 9} 12212 == {O}

Notice that nZ,,, where 71 is relatively prime to 12, just gives Z1.

Each of these subrings is an ideal.

For example, if we take 371, notice if we multiply an element by ¢ € Z15:
(3a)(c) (mod 12) = 3(ac) (mod 12).

So 3ac € 37Z.4,. Multiplication is commutative in Zq, so
multiplication on the right also works.

Notice: Zq,/37Z1, = the set of cosets of the form a + {0, 3, 6,9}
where a = 0,1, or 2. Thus Z4, /3741, = Z3. Similarly:

Ly2/2715 = L

Ly /41 = Ly

Ly2/6ZL17 = Lg
Ly2/12Z17 = Ly
L1221, = {0}.



