Factoring Polynomials over a Field

Our goal is to find zeros of a polynomial. Suppose we can factor a
polynomial over a field F, i.e. f(x) = g(x)h(x). Recall that if ¢, is the
evaluation homomorphism:

f(@) = ¢a(x) = pa(g(OR(X)) = ¢o(9(x))Pa(R(x)) = g(a)r(a).

Since F is a field it has no O divisors, if 0 = f(a) = g(a)h(a) then either
g(@) =0orh(a) =0.

So if we can factor a polynomial f(x) = g(x)h(x), then finding zeros of f (x) is
reduced to finding zeros of g(x) and h(x).

Theorem: Division Algorithm for F[x]

Let f(x) = ax™ + ap_x" 1+ -+ qq

g(x) = byyx™ + by x™™1 + -+« + by be elements of F[x],
with a,, and b,,, both non-zero, and m > 0. Then there are unique
polynomials g (x) and r(x) in F[x] such that:

fx) =qx)g(x) +r(x)

where either 7(x) = 0 or the degree of 7(x) is less than the degree m of
g(x).



Ex. Let f(x) =x*+x3—3x2+2x+3andg(x) = x% —2x + 2
in Zs[x]. Find q(x) and r(x) such that f(x) = g(x)q(x) + r(x)
and 7(x) is of degree less than g(x) (i.e. less than 2).

x*+3x+1

x2—2x+2 | x*+x3-3x2+2x+3

x* — 2x3 + 2x?

3x3 + 2x (—3 -2 =0mod)5)

3x3— x*2+ «x (3(2) = 1mod 5)
x2+ x+3
x2—2x+2
3x+1

Soq(x) =x?+3x=1andr(x) = 3x + 1.

Corollary: (Factor Theorem) An element @ € F is azero of f(x) € F[x]
if, and only if, x — a is a factor of f(x) in F[x].

Proof: Assumethat f(a) = 0, fora € F.

By the previous theorem we can write:
f(x) = (x —a)q(x) + r(x), where the degree of r(x) is 0.
Thus 7(x) =constant. But f (@) = 0 implies that:
O=f(@)=(a—a)q(a)+C= C =0.

Hence f(x) = (x — a)q(x) and x — a is a factor of f(x).



Now assume that x — & is a factor of f(x) in F[x]. Then we have:
f(x) = (x—a)q(x).

Hence: fla) =(a—a)q(a) = 0.

So aisazeroof f(x) € F[x].

Ex. Factor x* + 3x3 + x% + 2x + 3 € Zs[x] by finding a root & and then
dividing f(x) by x — a.

Since there are only 5 elements in Zg we can just test elements until we
find a root:

a=0, f(0)=3%0mod5
a=1 f(1)=1*+31)3++1)?+2(1)+3 =0mod 5.

Soa = lisarootof x* + 3x3 + x% + 2x + 3.

x3 + 4x?% + 2

x—11x*+3x34+x2+2x+3

x* —x3
4x3 + x?
4x3 — 4x?
+2x + 3 (1+4=0mod5)
2x — 2

0 (3+2=0mod)5)



Sox* +3x3++x%+2x+3 = (x—1)(x> + 4x% + 2) in Zs[x]

Now find a root of g(x) = x3 + 4x2 + 2 by testing elements of Zs.
g(0) =20

g(1) =13+4(1)242=7=2(mod5)

g(2) =234+4(2)2+2=26=1(mod5)

g(3) =33+ 4(3)>+ 2 =65= 0 (mod 5). So 3 isaroot.

x®+2x+1

x— 31x3 +4x?% + 2

x3 — 3x?
2x2
2x* —x
x+2
x—3

0

Sox*+3x34+x2+2x+3=(x—-1Dx-3)(x*+2x+1) € Zs[x].
Butx? + 2x + 1 = (x + 1)? so we get:

x*+3x3+x2+2x+3=(x—-1Dx-3)(x+1)? € Zs[x].



Corollary: A non-zero polynomial f(x) € F[x] of degree n can have at
most 1 zeros in a field.

This follows from the previous Corollary. If a4 is a zero of f (x) then:
f(x) =(x —ay)q:(x);  wheredegree of g;(x) isn — 1.
We can repeat this process at most n — 1 times before the degree of q; (x) is 0.

Thus f (x) can have at most n zeros.

Corollary: If G is a finite subgroup of the multiplicative group F*, * of a field
F, then G is cyclic. In particular, the multiplicative group of all
non-zero elements of a finite field is cyclic.

Ex. Find all generators of the cyclic multiplicative group of units of Zs.

Recall that if a is a generator of a finite cyclic group G of order n, then the
other generators of G are elements of the form a’” where 7 is relatively
prime to M. In this case, G is the multiplicative group G = {1, 2, 3,4} of
elements in Zs thus, |G| = 4.

Notice also that 2 is a generator of G since:
21=2, 2¢2=4, 23=3(mod5), 2*=1(modb).

So the other generators of G will be 2" where 1 is relatively prime to 4 so
23 = 3 (mod 5) is the only other generator of G. So {2, 3} are the
generators of G.



Def. A non-constant polynomial f(x) € F[x] is irreducible over F or is an
irreducible polynomial in F[x] if f (x) cannot be expressed as a product
g (x)h(x) of two non-constant polynomials g(x) and h(x) in F[x] both
lower degree than the degree of f (x). If f(x) € F[x] is not irreducible
over F, then f(x) is reducible over F.

Notice that a polynomial can be irreducible over one field but reducible
over a larger field.

Ex. f(x) = x? — 3isirreducible over Q but reducible over R, since:

x? =3 = (x—V3)(x +V3).

Ex. Let’sshow f(x) = x3 + x2 + 3x + 1in Zs[x] is irreducible over Zs.

Since f(x) is degree 3, If f (x) can be factored in Zg[x], then at least

one factor is linear. Thus f (x) must have a zero in Zg. However, in Zg:
f(0)=1

f(1)=6=1(mod5)

f(2)=234+422+3(2)+1=19 =4 (mod 5)
f(3)=33+32+33)+1=46=1 (mod5)
f(4)=43+4%+3(4)+1=93 =3 (mod5).

Thus f(x) doesn’t have a zero in Zs, and so f(x) is irreducible over Zs.



Theorem: Let f(x) € F[x] and let f(x) be degree 2 or 3. Then f(x) is

reducible over F if, and only if, it has a zero in F.

Proof: If f(x) is reducible then:

f(x) =p(x)q(x); wherethe degreesof p(x), q(x) are each at
least 1 and their sum is the degree of f (x) (either 2 or 3).

Thus the degree of p(x) or q(x) is 1.

Hence f(x) hasazeroin F.

If f(x) has a zero, @, in F, then we can write:
f(x) = (x —a)q(x); where the degree of q(x) is at least 1.

Hence f (x) is reducible over F.

Notice that if f (x) is degree 4 then it's possible that f(x) is reducible without
having a root in F. For example:

fx) =x*—9=(x?-3)(x*>+3)

factors over F = @Q, but doesn't have a zero in Q.

Theorem: If f(x) € Z[x], then f (x) factors into a product of two
polynomials of lower degrees 1 and s in Q[x] if, and only if,
it has such a factorization of the same degrees 1 and s in Z[x].



Corollary: If f(x) = x™ + ap_1x"" 1 + -+ ay € Z[x], with ay # 0,

and if f(x) hasazeroin Q; then it has azerom in Z, and m
must divide ay,.

Proof: Since f(x) € Z[x] by the previous theorem if it factors in Q[x],
it factors in Z[x].

Since f(x) has a zeroin Q it has a linear factor in Q[x]. Soin Z[x] we
have:

f(x) =(x—-—m) (xn_l +---—%) where %E Z.

So m divides ay.

Ex. Notice that x2 — 3 in Q[x] factors over Q if, and only if, it factors over
Z (since the coefficients are in Z). But in order to factor over Z, it would

have to have a zero in Z (which it clearly doesn’t). Thus, x?—3is
irreducible over Q.

Theorem: Eisenstein Criterion
Let p € Z be a prime. Suppose:
fx) =apx"+a,_1x" 1+ +ay € Z[x],
and a, # 0 (mod p), buta; = 0 (mod p) fori < n,
with ag # 0 (mod p?).

Then f(x) isirreducible over Q.



Ex. Showthat f(x) = 11x° — 3x* — 9x2 — 12 is irreducible over Q.

If we take p = 3, noticethat 11 # 0 (mod 3),
—3,—9,—12 are = 0 (mod 3), and
—12 # 0 (mod 9).

Thus by the Eisenstein criterion, f (x) is irreducible over Q.

Ex. Show that f(x) = 2x% — 7x° + 21x3 — 14x + 14 is irreducible over Q.

If we take p = 7, noticethat 2 # 0 (mod 7),
—7,21,—14,14 are = 0 (mod 7), and
14 # 0 (mod 49).

Thus by the Eisenstein criterion, f (x) is irreducible over Q.



